704.二分查找
思路
因为是顺序、无重复的所以使用二分法,比直接查找更快。找中位值(默认向下取整),如果中位值不等于target,就根据上次的区间更新左值,右值,中位值。结束循环的标志为中位值等于target或者mid等于left或者right。
结果
没做出来😅,不清楚结束循环的标志和边界怎么办
反思
-
对于区间内的取值不清楚
-
左闭右闭的取值要:left和right取值为middle+1或者-1,这样才能保证最后middle的值能取到左右区间的端点。如果是最后一步找到应该为mid= left= right。
-
while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
-
if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1
-
-
左闭右开
-
while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
-
if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]
-
-
代码
class Solution { public: int search(vector<int>& nums, int target) { int left = 0; int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right) while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 < int middle = left + ((right - left) >> 1); if (nums[middle] > target) { right = middle; // target 在左区间,在[left, middle)中 } else if (nums[middle] < target) { left = middle + 1; // target 在右区间,在[middle + 1, right)中 } else { // nums[middle] == target return middle; // 数组中找到目标值,直接返回下标 } } // 未找到目标值 return -1; } };
-
时间复杂度:O(log n)
-
空间复杂度:O(1)
总结
-
对区间的定义没有想清楚,区间的定义就是不变量。要在二分查找的过程中,保持不变量,就是在while寻找中每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。
27.移除元素
思路
一个从头到尾指针1,一个从尾到头的指针2,如果指针1的值检测到了val,则进入覆盖程序,将指针2的值覆盖到1(如果指针2的值也为val,则减一位,while不等),结束条件为指针1等于指针2.同时k即为指针1.如果最后指针1,2都为val,则k为指针-1.
结果
做出来了!❤️重点还是边界条件等号怎么确定。
class Solution { public: int removeElement(vector<int>& nums, int val) { int n = nums.size(), left = 0, right = nums.size()-1; for(; left <= right; ++left){//这个等号 if(nums[left] == val){ while(nums[right] == val){ right--; if(right <= left){//这个小于号 return left; } } nums[left]=nums[right]; right--; } } return left; } };
代码
我的方法和这种类似,leetcode官方解法比我的要简洁。
class Solution { public: int removeElement(vector<int>& nums, int val) { int left = 0, right = nums.size(); while (left < right) { if (nums[left] == val) { nums[left] = nums[right - 1];//赋值完并不进行left++,重复检测是否等于val,可以避免nums[right]是否为Val的检测。 right--; } else { left++; } } return left; } };
总结
-
快慢指针适用性较强,但重复赋值并不是最优解。头尾指针较好,但是思路并没有快慢指针清楚。
-
在while里面的if-else里面递增,可以给新赋值重新检测避免if-else嵌套。