(一)树的逻辑结构
一、树的定义
树:n(n≥0)个结点的有限集合。
当n=0时,称为空树;
任意一棵非空树满足以下条件:
⑴ 有且仅有一个特定的称为根的结点;
⑵ 当n>1时,除根结点之外的其余结点被分成m(m>0)个互不相交的有限集合T1,T2,… ,Tm,其中每个集合又是一棵树,并称为这个根结点的子树。
树的定义是采用递归方法。
二、树的基本术语
结点的度:结点所拥有的子树的个数。
树的度:树中各结点度的最大值。
叶子节点:度为0的结点,也成为终端节点。
分支节点:度不为0的结点,也成为非终端节点。
孩子、双亲:书中某结点子树的根结点成为这个结点的孩子结点,这个结点成为它孩子结点的双亲结点。
兄弟:具有同一个双亲的孩子结点互称为兄弟。
路径:如果树的结点序列n1, n2, …, nk有如下关系:结点ni是ni+1的双亲(1<=i<k),则把n1, n2, …, nk称为一条由n1至nk的路径;路径上经过的边的个数称为路径长度。
祖先、子孙:在树中,如果有一条路径从结点x到结点y,那么x就称为y的祖先,而y称为x的子孙。
结点所在层数:根结点的层数为1;对其余任何结点,若某结点在第k层,则其孩子结点在第k+1层。
树的深度:树中所有结点的最大层数,也称高度。
层序编号:将树中结点按照从上层到下层、同层从左到右的次序依次给他们编以从1开始的连续自然数。
有序树、无序树:如果一棵树中的结点的格子数从左到右是有次序的,称这棵树为有序树;反之,成为无序树。
数据结构中讨论的一般是有序树。
森林:m(m>0)棵互不相交的树的集合。
三、树的遍历操作
树的遍历:从根结点出发,按照某种次序访问树中所有结点,使得每个结点被访问一次且仅被访问一次。
1. 前序遍历
树的前序遍历操作定义为:
(1) 访问根节点;
(2) 按照从左到右的顺序前序遍历根节点的每一棵子树。
前序遍历序列:A B D E H I F C G
2. 后序遍历
树的后续遍历操作定义为:
若树为空,则遍历结束;否则:
(1) 按照从左到右的顺序后序遍历根节点的每一棵子树;
(2) 访问根节点。
后序遍历序列:D H I E F B G C A
3. 层序遍历
树的层序遍历操作定义为:
从树的第一层(即根节点)开始,自上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。
层序遍历序列:A B C D E F G H I
(二) 树的存储结构
一、双亲表示法
基本思想:
用一维数组来存储树的各个结点(一般按层序存储),
数组中的一个元素对应树中的一个结点,
每个结点记录两类信息:结点的数据信息以及该结点的双亲在数组中的下标。
data:存储树中结点的数据信息
parent:存储该结点的双亲在数组中的下标
template <class T>
struct PNode{
T data; //数据域
int parent; //指针域,双亲在数组中的下标
};
二、孩子表示法——多重链表表示法
确定链表的结构:链表中的每个节点包括一个数据域和多个指针域,每个指针域指向该结点的一个孩子结点。
方案一:指针域的个数等于树的度
其中:
data:数据域,存放该节点的数据信息;
child1~childd:指针域,指向该结点的孩子。
缺点:浪费空间。
方案二:指针域的个数等于该结点的度
其中:
data:数据域,存放该结点的数据信息;
degree:度域,存放该结点的度;
child1~childd:指针域,指向该结点的孩子。
缺点:结点结构不一致
三、孩子表示法——孩子链表表示法
特点:将每个结点的所有孩子放在一起,构成线性表。
基本思想:
把每个结点的孩子排列起来,看成是一个线性表,且以单链表存储,则n个结点共有n个孩子链表。
这 n 个单链表共有 n 个头指针,这 n 个头指针又组成了一个线性表。
为了便于进行查找采用顺序存储存储每个链表的头指针。
最后,将存放 n 个头指针的数组和存放n个结点的数组结合起来,构成孩子链表的表头数组。
孩子结点:
struct CTNode
{
int child;
CTNode *next;
};