[数据结构笔记] 树

(一)树的逻辑结构

一、树的定义

树:nn0结点的有限集合

n0时,称为空树;

任意一棵非空树满足以下条件:

有且仅有一个特定的称为的结点;

n1时,除根结点之外的其余结点被分成mm>0互不相交的有限集合T1,T2, ,Tm其中每个集合又是一棵树,并称为这个根结点的子树

树的定义是采用递归方法。

二、树的基本术语

结点的度:结点所拥有的子树的个数。

树的度:树中各结点度的最大值。

叶子节点:度为0的结点,也成为终端节点。

分支节点:度不为0的结点,也成为非终端节点。

孩子、双亲:书中某结点子树的根结点成为这个结点的孩子结点,这个结点成为它孩子结点的双亲结点。

兄弟:具有同一个双亲的孩子结点互称为兄弟。

路径:如果树的结点序列n1, n2, …, nk有如下关系:结点nini+1的双亲(1<=i<k),则把n1, n2, …, nk称为一条由n1nk的路径;路径上经过的边的个数称为路径长度

祖先、子孙:在树中,如果有一条路径从结点x到结点y,那么x就称为y的祖先,而y称为x的子孙。

结点所在层数:根结点的层数为1;对其余任何结点,若某结点在第k层,则其孩子结点在第k+1层。

树的深度:树中所有结点的最大层数,也称高度

层序编号:将树中结点按照从上层到下层、同层从左到右的次序依次给他们编以从1开始的连续自然数。

有序树、无序树:如果一棵树中的结点的格子数从左到右是有次序的,称这棵树为有序树;反之,成为无序树。

数据结构中讨论的一般是有序树。

森林:m(m>0)棵互不相交的树的集合。

三、树的遍历操作

树的遍历:结点出发,按照某种序访问树中所有结点,使得每个结点被访问一次且仅被访问一次。

1. 前序遍历

树的前序遍历操作定义为:

(1) 访问根节点;

(2) 按照从左到右的顺序前序遍历根节点的每一棵子树。

前序遍历序列:A B D E H I F C G

2. 后序遍历

树的后续遍历操作定义为:

若树为空,则遍历结束;否则:

(1) 按照从左到右的顺序后序遍历根节点的每一棵子树;

(2) 访问根节点。

后序遍历序列:D H I E F B G C A

3. 层序遍历

树的层序遍历操作定义为:

从树的第一层(即根节点)开始,自上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。

层序遍历序列:A B C D E F G H I

(二) 树的存储结构

一、双亲表示法

基本思想:

用一维数组来存储树的各个结点(一般按层序存储),

数组中的一个元素对应树中的一个结点,

每个结点记录两类信息:结点的数据信息以及该结点的双亲在数组中的下标。

data:存储树中结点的数据信息

parent:存储该结点的双亲在数组中的下标

template <class T>
struct PNode{
     T data;          //数据域
     int parent;   //指针域,双亲在数组中的下标
};

二、孩子表示法——多重链表表示法

确定链表的结构:链表中的每个节点包括一个数据域和多个指针域,每个指针域指向该结点的一个孩子结点。

方案一:指针域的个数等于树的度

其中:

data:数据域,存放该节点的数据信息;

child1~childd:指针域,指向该结点的孩子。

缺点:浪费空间。

方案二:指针域的个数等于该结点的度

其中:

data:数据域,存放该结点的数据信息;

degree:度域,存放该结点的度;

child1~childd:指针域,指向该结点的孩子。

缺点:结点结构不一致

三、孩子表示法——孩子链表表示法

特点:将每个结点的所有孩子放在一起,构成线性表。

基本思想:

把每个结点的孩子排列起来,看成是一个线性表,且以单链表存储,则n个结点共有n个孩子链表。

n 个单链表共有 n 个头指针,n 个头指针又组成了一个线性表。

为了便于进行查找采用顺序存储存储每个链表的头指针

最后,将存放 n 个头指针的数组和存放n个结点的数组结合起来,构成孩子链表的表头数组 

孩子结点:

struct CTNode
{   
     int child;
     CTNode *next;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值