4. 寻找两个有序数组的中位数(Python)

给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。

示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0

示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

class Solution(object):
    def findMedianSortedArrays(self, nums1, nums2):
        """
        :type nums1: List[int]
        :type nums2: List[int]
        :rtype: float
        """
        len_1 = len(nums1)
        len_2 = len(nums2)
        if not nums1 or len(nums1) == 0:
            if len_2 % 2 == 0:
                return float(nums2[len_2//2] + nums2[len_2//2 - 1]) / 2.0
            else:
                return nums2[len_2//2]
        if not nums2 or len(nums2) == 0:
            if len_1 % 2 == 0:
                return float(nums1[len_1//2] + nums1[len_1//2 - 1]) / 2.0
            else:
                return nums1[len_1//2]

        tmp = []
        i = j = 0
        while i < len_1 and j < len_2:
            if nums1[i] <= nums2[j]:
                tmp.append(nums1[i])
                i += 1
            else:
                tmp.append(nums2[j])
                j += 1
        while i < len_1:
            tmp.append(nums1[i])
            i += 1
        while j < len_2:
            tmp.append(nums2[j])
            j += 1

        le = len(tmp)
        if le % 2 == 0:
            return float(tmp[le // 2] + tmp[le // 2 - 1]) / 2.0
        else:
            return tmp[le // 2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值