金融风控训练营TASK01学习笔记

学习知识点概要

  • 混淆矩阵(Confuse Matrix)
  • 准确率(Accuracy)
  • 精确率(Precision)
  • 召回率(Recall)
  • F1 Score
  • P-R曲线(Precision-Recall Curve)
  • ROC(Receiver Operating Characteristic)
  • TPR
  • FPR
  • AUC(Area Under Curve)
  • KS(Kolmogorov-Smirnov)

学习内容

1、评估指标

AUC(area Under Curve)
其中,AUC有两方面的含义:

  • AUC只反映模型对正负样本排序能力的强弱,对score的大小和精度没有要求。
  • AUC越高,模型排序能力越强。理论上,当模型把所有正样本都排在负样本之前时,AUC为1.0,是理论的最大值。
# AUC在sklearn中的工具调用以及使用
import numpy as np
from sklearn.metrics import roc_auc_score

y_true=np.array([0,0,1,1])
y_scores=np.array([0.1,0.4,0.35,0.8])

roc_auc_score(y_true,y_scores)

2、数据下载

在这里插入图片描述在官网的赛题与数据那一栏就可以看到这三个文件,点击下载按钮即可。

3、比赛流程

在这里插入图片描述

学习问题与解答

今天学习的东西除了关于比赛的一些操作和理论,更多的是学习在CSDN如何编辑博客(笑哭),以前一直在看一些大神的文章,有那么一瞬也想过自己要不也来写写,但是很快就被自己脑袋里面另一个小人“劝退”了,今天在打卡的同时顺便也学习如何编辑一篇博客,算是无意中踏出了第一步吧,在这个比赛结束后,就算没有学到什么数据挖掘的硬核知识,好歹也学到了怎样写博客了(bushi,顺便提一下,要是这里能用表情就好了。。。

学习思考与总结

今天就算是正式开始数据分析与挖掘之旅了,我本人也是一直纠结该不该来参加这个比赛,毕竟自己不是属于这个方向的,这个月在生活上的事情也格外的多且杂。但是总要给自己一点压力的,我不知道以后能不能从事这方面相关的工作,现在既然有兴趣,那就趁自己还在学校多学一点是一点吧。今天的task1还是属于理解赛题的阶段,了解了比赛的评估指标和数据特征,之后的数据分析与可视化,也就是EDA就是task2的工作了。那task1就到这吧,第一次写文章就是第一次来技术大圈CSDN,脑子一片空白。。。唉,加油,打工人!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值