题目描述
给你一个由 不同 正整数组成的数组 nums ,请你返回满足 a * b = c * d 的元组 (a, b, c, d) 的数量。其中 a、b、c 和 d 都是 nums 中的元素,且 a != b != c != d 。
示例 1:
输入:nums = [2,3,4,6]
输出:8
解释:存在 8 个满足题意的元组:
(2,6,3,4) , (2,6,4,3) , (6,2,3,4) , (6,2,4,3)
(3,4,2,6) , (4,3,2,6) , (3,4,6,2) , (4,3,6,2)
示例 2:
输入:nums = [1,2,4,5,10]
输出:16
解释:存在 16 个满足题意的元组:
(1,10,2,5) , (1,10,5,2) , (10,1,2,5) , (10,1,5,2)
(2,5,1,10) , (2,5,10,1) , (5,2,1,10) , (5,2,10,1)
(2,10,4,5) , (2,10,5,4) , (10,2,4,5) , (10,2,5,4)
(4,5,2,10) , (4,5,10,2) , (5,4,2,10) , (5,4,10,2)
提示:
- 1 <= nums.length <= 1000
- 1 <= nums[i] <= 104
- nums 中的所有元素 互不相同
解题思路
假设当前给定元组 (a,b,c,d) 满足 a×b=c×d ,且 a = / b = / c = / d a{=}\llap{/\,}b{=}\llap{/\,}c{=}\llap{/\,}d a=/b=/c=/d 则可以知道该元组可以按照不同顺序组合,组成 8个不同的元组,且这个 8个元组均满足题目要求,八个元组如下:
(a,b,c,d) | (c,d,a,b) |
---|---|
(a,b,d,c) | (c,d,b,a) |
(b,a,c,d) | (d,c,a,b) |
(b,a,d,c) | (d,c,b,a) |
即每两对乘积相同的四个数,元组排序有8种可能,所以只需找出nums 中乘积相同的对数即可,如nums = [1,2,4,5,10]
中:
1
×
10
=
2
×
5
=
10
1\times10=2\times5=10
1×10=2×5=10
4
×
5
=
2
×
10
=
20
4\times5=2\times10 =20
4×5=2×10=20
将乘积作为key,乘数作业value放入哈希表中,如下:
{10:2 ,20:2}
设ans 为满足 a * b = c * d 的数量
故 ans =
8
×
(
C
2
2
+
C
2
2
)
8\times(C^2_2+C^2_2)
8×(C22+C22)
又如当哈希表得出结果为{ a:n, b:m, c:o, ....., f:t } (n,m,o,t >= 2)
时
ans =
8
×
(
C
n
2
+
C
m
2
+
.
.
.
+
C
t
2
)
8\times(C^2_n+C^2_m+...+C^2_t)
8×(Cn2+Cm2+...+Ct2)
代码
public int tupleSameProduct(int[] nums) {
int ans = 0;
HashMap<Integer,Integer> map = new HashMap<Integer,Integer>();
for (int i = 0; i < nums.length - 1; i++) {
for (int j = i+1; j < nums.length; j++) {
int m = nums[i] * nums[j];
map.put(m,map.getOrDefault(m,0)+1);
}
}
for (Integer key : map.keySet()) {
int times = map.get(key);
if(times==2){
ans+=8;
}else if(times>2){
ans+=8*(times*(times-1)/2);
}
}
return ans;
}