机器学习复习--logistic回归简单的介绍和代码调用

文章介绍了机器学习中的线性回归和逻辑回归概念,包括线性回归的方程和逻辑回归的sigmoid函数。接着详细阐述了逻辑回归的损失函数——交叉熵,并解释了梯度下降法在优化逻辑回归模型中的应用。最后提到了在实际应用中,为何经常对特征进行离散化处理及其带来的好处。
摘要由CSDN通过智能技术生成

最近需要复习一下机器学习相关知识,记录一下

一、简介

线性回归: h ( x ) = w T x + b h(x)=w^T x +b h(x)=wTx+b

logistic回归就是在线性模型的基础上加上一个sigmoid函数 g g g,即 h ( x ) = g ( w T x + b ) h(x)=g(w^T x+b) h(x)=g(wTx+b) 。 。 g ( z ) = 1 / ( 1 + e − z ) g(z)=1/(1+e^{-z}) g(z)=1/(1+ez)
它可以将一个线性回归中的结果转化为一个概率值。此时 h ( x ) h(x) h(x)表示的就是某件事发生的概率,我们也可以记为 p ( Y = 1 ∣ x ) p(Y=1|x) p(Y=1∣x)

二、 逻辑回归的损失函数

逻辑回归采用的是交叉熵的损失函数。

对于一般的二分类的逻辑回归来说交叉熵函数为: J ( θ ) = − [ y l n ( y ′ ) + ( 1 − y ) l n ( 1 − y ′ ) ] J(\theta)=-[yln(y')+(1-y)ln(1-y')] J(θ)=[yln(y)+(1y)ln(1y)],其中 y ′ y' y是预测值。

实际上我们求的是训练中所有样本的损失,因此:

J ( θ ) = − 1 m ∑ [ y i l n ( y i ‘ ) + ( 1 − y i ) l n ( 1 − y i ‘ ) ] J(\theta )=-\frac{1}{m}\sum[y_i ln(y_i`)+(1-y_i )ln(1-y_i`)] J(θ)=m1[yiln(yi)+(1yi)ln(1yi)]

三、逻辑回归的优化方法

3.1 梯度下降

函数梯度的方向就是函数增长最快的方向,反之梯度的反方向就是函数减少最快的方向。因此我们想要计算一个函数的最小值,就朝着该函数梯度相反的方向前进。
假设我们需要优化的函数: f ( X ) = f ( x 1 , . . . , x n ) f(X)=f(x_1,...,x_n) f(X)=f(x1,...,xn)

首先我们初始化自变量,从 X ( 0 ) = ( x 1 ( 0

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱挠静香的下巴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值