SPFA(队列优化的Bellman-Ford算法)

SPFA(Shortest path faster algorithm)
算法思想基于Bellman-Ford算法
进行优化的方式是 在进行某一次松弛操作中 如果起点到一个点的距离不变 那么以这个点为中转点能到达的点距起点的距离不变

如果这个点的距离发生了变化 就将这个点入队列 以求通过这个点中转的点距起点的位置是否发生了变化

vis数组标记当前位于队列中的顶点

显然 一个顶点出队列时 要取消标记

#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define mod 1000000007
#define IOS ios::sync_with_stdio(false)
#define endl '\n'

using namespace std;
typedef long long ll;
typedef pair<int, int>p;

const int maxn = 205;
int n, m;
int d[maxn], vis[maxn];
vector<p>vec[maxn];

void init() {
	for (int i = 0;i < maxn;++i)d[i] = INF;
	for (int i = 0;i < maxn;++i)vec[i].clear();
	for (int i = 0;i < maxn;++i)vis[i] = 0;
}

int main() {
	while (~scanf("%d %d", &n, &m)) {
		init();
		for (int i = 0;i < m;++i) {
			//无向图
			int x, y, z;cin >> x >> y >> z;
			vec[x].push_back(make_pair(y, z));
			vec[y].push_back(make_pair(x, z));
		}
		int s, t;cin >> s >> t;
		queue<int>q;
		d[s] = 0;
		q.push(s);
		vis[s] = 1;
		while (!q.empty()) {
			int now = q.front();
			q.pop();vis[now] = 0;
			for (int i = 0;i < vec[now].size();++i) {
				int v = vec[now][i].first;
				if (d[v] > d[now] + vec[now][i].second) {
					d[v] = d[now] + vec[now][i].second;
					if (!vis[v]) {
						vis[v] = 1;
						q.push(v);
					}
				}
			}
		}
		if (d[t] == INF)printf("-1\n");
		else printf("%d\n", d[t]);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzqwtc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值