Acwing 1175.最大联通子图(tarjan缩点求scc)

Acwing 1175.最大连通子图

题意

一个有向图 G = ( V , E ) G=(V, E) G=(V,E) 称为半连通的 (Semi-Connected),如果满足: ∀ u , v ∈ V \forall u, v \in V u,vV ,满足 u → v u \rightarrow v uv v → u v \rightarrow u vu ,即 对于图中任意两点 u , v u, v u,v ,存在一条 u u u v v v 的有向路径或者从 v v v u u u 的有向路径。
G ′ = ( V ′ , E ′ ) G^{\prime}=\left(V^{\prime}, E^{\prime}\right) G=(V,E) 满足, E ′ E^{\prime} E E E E 中所有和 V ′ V^{\prime} V 有关的边,则称 G ′ G^{\prime} G G G G 的一个导出子图。 若 G ′ G^{\prime} G G G G 的导出子图,且 G ′ G^{\prime} G 半连通,则称 G ′ G^{\prime} G G G G 的半连通子图。
G ′ G^{\prime} G G G G 所有半连通子图中包含节点数最多的,则称 G ′ G^{\prime} G G G G 的最大半连通子图。
给定一个有向图 G G G ,请求出 G G G 的最大半连通子图拥有的节点数 K K K ,以及不同的最大半连通子图的数目 C C C 。 由于 C C C 可能比较大,仅要求输出 C C C X X X 的余数。

输入格式

第一行包含三个整数 N , M , X 。 N , M N, M, X 。 N, M N,M,XN,M 分别表示图 G G G 的点数与边数, X X X 的意义如上文所述;
接下来 M M M 行,每行两个正整数 a , b a, b a,b ,表示一条有向边 ( a , b ) (a, b) (a,b)
图中的每个点将编号为 1 到 N N N ,保证输入中同一个 ( a , b ) (a, b) (a,b) 不会出现两次。

输出格式

应包含两行。
第一行包含一个整数 K K K ,第二行包含整数 C   m o d   X o C \bmod X_{\mathrm{o}} CmodXo

数据范围

1 ≤ N ≤ 1 0 5 1 \leq N \leq 10^{5} 1N105
1 ≤ M ≤ 1 0 6 1 \leq M \leq 10^{6} 1M106
1 ≤ X ≤ 1 0 8 1 \leq X \leq 10^{8} 1X108

思路

半连通:存在 u → v u \rightarrow v uv 的路径 或者存在 v → u v \rightarrow u vu 的路径

导出子图:若 G ′ = ( V ′ , E ′ ) G' = (V',E') G=(V,E) 满足, E ′ E' E E E E 中所有和 V ′ V' V 有关的边,则称 G ′ G' G G G G 的一个导出子图

半连通子图:若 G ′ G' G G G G 的导出子图,并且 G ′ G' G 半连通,那么称 G ′ G' G G G G 的半连通子图

最大半连通子图:对于所有符合条件的半连通子图 G ′ G' G ∣ G ′ ′ ∣ > = ∣ G ′ ∣ |G''| >= |G'| G>=G G ′ ′ G'' G 称为原图 G G G 的最大连通子图

强连通分量必然是半连通

求解步骤:

  1. 先用tarjan算法求出强连通分量并缩点

  2. 建图 给边判重(给边判重的原因是 两个半连通子图不相同当且仅当两个子图有某些点不同 而当两个半连通子图只有边不同时,我们认为它们相等)

  3. 拓扑图上求最大半连通子图    ⟺    \iff 求最长无分叉链

  4. 求最长无分叉链    ⟺    \iff 拓扑图上的最长路(scc中点的数量为权重)

代码

// 题目给的 M 为 1e6 但是我们要建两个图 所以 设 M 为 2e6
const int N = 1e5 + 10, M = 2e6 + 10;
int n, m, mod;
int h[N],hs[N],e[M],ne[M],idx;
int low[N],dfn[N];
int scc,timestamp;
stack<int>stk;
bool in_stk[N];
int id[N],siz[N];
int f[N],g[N];
unordered_set<LL>S;

void add(int h[],int a,int b){
	e[idx] = b,ne[idx] = h[a],h[a] = idx++;
}

void tarjan(int u){
	dfn[u] = low[u] = ++timestamp;
	stk.push(u),in_stk[u] = true;
	
	for(int i = h[u];~i;i = ne[i]){
		int j = e[i];
		if(!dfn[j]){
			tarjan(j);
			low[u] = min(low[u],low[j]);
		}
		else if(in_stk[j]){
			low[u] = min(low[u],dfn[j]);
		}
	}
	
	if(dfn[u] == low[u]){
		int y = 0;
		++scc;
		do{
			y = stk.top();
			stk.pop();
			in_stk[y] = false;
			siz[scc]++;
			id[y] = scc;
		}while(y != u);
	}
}

void solve() {
	scanf("%d%d%d",&n,&m,&mod);
	memset(h,-1,sizeof h);
	memset(hs,-1,sizeof hs);
	
	while(m--){
		int a,b;scanf("%d%d",&a,&b);
		add(h,a,b);
	}
	
	for(int i = 1;i <= n;++i){
		if(!dfn[i])
			tarjan(i);
	}
	
	for(int i = 1; i <= n;++i){ // 对scc建图
		for(int j = h[i];~j;j = ne[j]){
			int k = e[j];
			int a = id[i], b = id[k];
			LL hash = a * 1000000ll + b;
			if(a != b && !S.count(hash)){
				add(hs,a,b);
				S.insert(hash);
			}
		}
	}
	
	for(int i = scc;i;--i){ // scc递减的顺序为 拓扑序
		if(!f[i]){
			f[i] = siz[i];
			g[i] = 1;
		}
		
		for(int j = hs[i];~j;j = ne[j]){
			int k = e[j];
			if(f[k] < f[i] + siz[k]){
				f[k] = f[i] + siz[k];
				g[k] = g[i];
			}
			else if(f[k] == f[i] + siz[k]){
				g[k] = (g[k] + g[i]) % mod;
			}
		}
	}
	
	LL sum = 0,maxn = 0;
	for(int i = 1; i <= scc;++i){
		if(f[i] > maxn){
			maxn = f[i];
			sum = g[i];
		}
		else if(f[i] == maxn){
			sum = (sum + g[i]) % mod;
		}
	}
	
	printf("%lld\n",maxn);
	printf("%lld\n",sum);
}

signed main() {

    //int _; cin >> _;
    //while (_--)
        solve();

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzqwtc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值