AcWing 846. 树的重心
给定一颗树,树中包含n个结点(编号1~n)和n-1条无向边。
请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。
重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。
输入格式
第一行包含整数n,表示树的结点数。
接下来n-1行,每行包含两个整数a和b,表示点a和点b之间存在一条边。
输出格式
输出一个整数m,表示重心的所有的子树中最大的子树的结点数目。
数据范围
输入样例
9
1 2
1 7
1 4
2 8
2 5
4 3
3 9
4 6
输出样例:
4
代码
#include
#include
#include
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair PII;
const int N = 1e5 + 10;
int ans = 0x3f3f3f3f;
int n;
vectorvec[N];
int vis[N];
int dfs(int now) {
vis[now] = 1;
int sum = 1, res = 0;
//res 剩余连通块中点数的最大值
//sum 当前节点的子树点数再加上自己的点数
for (int i = 0;i < vec[now].size();++i) {
if (!vis[vec[now][i]]) {
int s = dfs(vec[now][i]);//一个子树的大小
res = max(res, s);//所有子树大小的最大值
sum += s; //所有子树再加上根节点的大小
}
}
res = max(n - sum, res);//父节点子树大小
ans = min(ans, res); // 最大子树的最小值
return sum;
}
int main() {
cin >> n;
for (int i = 0;i < n - 1;++i) {
int u, v;
cin >> u >> v;
vec[u].push_back(v);
vec[v].push_back(u);
}
dfs(1);
cout << ans << endl;
}