AcWing243. 一个简单的整数问题2(树状数组实现区间修改+区间查询)
a 1 + a 2 + a 3 + a … a x a_{1}+a_{2}+a_{3}+a\dots a_{x} a1+a2+a3+a…ax = = == == ∑ i = 1 x ∑ j = 1 i b j \sum^{x}_{i = 1}\sum^{i}_{j = 1}b_{j} ∑i=1x∑j=1ibj
给定一个长度为N的数列A,以及M条指令,每条指令可能是以下两种之一:
1、“C l r d”,表示把 A[l],A[l+1],…,A[r] 都加上 d。
2、“Q l r”,表示询问 数列中第 l~r 个数的和。
对于每个询问,输出一个整数表示答案。
输入格式
第一行两个整数N,M。
第二行N个整数A[i]。
接下来M行表示M条指令,每条指令的格式如题目描述所示。
输出格式
对于每个询问,输出一个整数表示答案。
每个答案占一行。
数据范围
1
≤
N
,
M
≤
1
0
5
,
1≤N,M≤10^{5},
1≤N,M≤105,
∣
d
∣
≤
10000
|d|≤10000
∣d∣≤10000
∣
A
[
i
]
∣
≤
1000000000
|A[i]|≤1000000000
∣A[i]∣≤1000000000
代码
#include <iostream>
using namespace std;
typedef long long LL;
const int N = 100010;
int n , m;
int a[N];
LL tr1[N] , tr2[N];
int lowbit(int x)
{
return x & -x;
}
void add(LL tr[] , int x , LL c)
{
for(int i = x ; i <= n ; i += lowbit(i)) tr[i] += c;
}
LL sum(LL tr[] , int x)
{
LL res = 0;
for(int i = x ; i ; i -= lowbit(i)) res += tr[i];
return res;
}
LL prefix_sum(int x)
{
return sum(tr1 , x) * (x + 1) - sum(tr2 , x);
}
int main()
{
scanf("%d%d" , &n , &m);
for(int i = 1; i <= n ; i++) scanf("%d", &a[i]);
for(int i = 1 ; i <= n ; i++)
{
int b = a[i] - a[i - 1];
add(tr1 , i , b);
add(tr2 , i , (LL)b * i);
}
while(m--)
{
int l , r , d;
char op[2];
scanf("%s%d%d" , op , &l , &r);
if(*op == 'Q')
cout << prefix_sum(r) - prefix_sum(l - 1) << endl;
else
{
scanf("%d" , &d);
add(tr1 , l , d) , add(tr1 , r + 1 , -d);
add(tr2 , l , l * d) , add(tr2 , r + 1 , (r + 1) * (- d));
}
}
return 0;
}