欧几里得与扩欧

欧几里得算法

gcd ⁡ ( a , b ) = gcd ⁡ ( b , a % b ) \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b) gcd(a,b)=gcd(b,a%b)

裴蜀定理

对于给定的正整数 a , b a,b a,b方程 a x + b y = c ax + by = c ax+by=c有解的充要条件为c是 g c d ( a , b ) gcd(a,b) gcd(a,b)的整数倍

扩展欧几里得

在求a、b最大公约数的同时,能找到整数x、y使得 a x + b y = g cd ⁡ ( a , b ) a x+b y=g\operatorname{cd}(a, b) ax+by=gcd(a,b)

给定 n n n对整数 a i , b i a_{i}, b_{i} ai,bi,对于每对数,求出一组 x i , y i x_{i}, y_{i} xi,yi,使其满足 a i ∗ x i + b i ∗ y i = g c d ( a i , b i ) a_{i} * x_{i}+b_{i} * y_{i}=g c d\left(a_{i}, b_{i}\right) aixi+biyi=gcd(ai,bi)

证明:因为 a ∗ x + b ∗ y = g cd ⁡ ( a , b ) a *x+b *y=g\operatorname{cd}(a, b) ax+by=gcd(a,b) g c d ( a , b ) = g c d ( b , a gcd(a,b)=gcd(b,a gcd(a,b)=gcd(b,a% b ) b) b)

g c d ( b , a % b ) g c d(b, a \% b) gcd(b,a%b)= b ∗ y + ( a   m o d   b ) x b*y + (a\,mod\,b)x by+(amodb)x

= b ∗ y + ( a − a / b ∗ b ) x =b*y + (a-a/b*b)x =by+(aa/bb)x

= a ∗ x + b ∗ ( y − a / b ∗ x ) =a*x+b*(y-a/b*x) =ax+b(ya/bx)

#include<iostream>
#include<algorithm>
using namespace std;
int exgcd(int a,int b,int &x,int &y){
    if(!b){
        x = 1,y =0;
        return a;
    }
    int d = exgcd(b,a % b,y,x);
    y -= a / b * x;
    
    return d;
    
}
int main(){
    int t;cin >> t;
    while(t--){
        int a, b, x, y;
        cin >> a >> b;
        exgcd(a,b,x,y);
        cout << x << " " << y << endl;
    }
    
    return 0;
}

扩展欧几里得算法的几种用途

①求逆元

前提: g c d ( a , b ) = 1 gcd(a,b) = 1 gcd(a,b)=1

逆元的定义:若 a ∗ x ≡ 1 ( m o d    b ) a*x≡1(mod\,\,b) ax1(modb)且a与b互质,那么x为a的逆元

上式可以变形成为: a ∗ x = b y + 1 a*x=by+1 ax=by+1 a ∗ x + b ∗ y = 1 a*x+b*y=1 ax+by=1 所以通过 e x g c d ( a , b , x , y ) exgcd(a,b,x,y) exgcd(a,b,x,y)求出的x即为a的乘法逆元

②求线性同余方程

给定 n n n组数据 a i , b i , m i a_i,b_i,m_i ai,bi,mi,对于每组数求出一个 x i x_i xi,使其满足 a i ∗ x i ≡ b i ( m o d    m i ) a_i*x_i≡b_i(mod\,\,m_i) aixibi(modmi)

上式与求逆元一样变形得 a i ∗ x i ≡ b i + y ∗ m i a_i*x_i≡b_i+y*m_i aixibi+ymi a i ∗ x i + m i ∗ y = b a_i*x_i+m_i*y=b aixi+miy=b先求 e c g c d ( a , m , x , y ) ecgcd(a,m,x,y) ecgcd(a,m,x,y)得到 d = g c d ( a , m ) d=gcd(a,m) d=gcd(a,m)判断b是否为d倍数(裴蜀定理)如果是,此时x为 a i ∗ x i + m i ∗ y = b a_i*x_i+m_i*y=b aixi+miy=b的解,所以 x ∗ ( b / d ) x *(b / d) x(b/d) % m m m为最终解 ,否则无解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzqwtc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值