CodeForces - 1463D. Pairs
题意
将 2 n 2n 2n 个数,分成 n n n 对。其中 x x x对进行取小操作,剩下的数进行取大操作。给你一个 n n n 个元素的序列 a a a 。问你 x x x 可以为多少种数,能得到 a a a 数组。
思路
将出现过的数字放在 a a a 数组 未出现过的数放在 b b b 数组
设 R R R 为 最多可以取多少次小 二分求 R R R
设 L L L 为 最多可以取多少次大 二分求 L L L 则 n − L n - L n−L 为最少可以取多少次小
最终 x x x 范围为 R − ( n − L ) + 1 R - (n - L) + 1 R−(n−L)+1
代码
#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define mod 1000000007
using namespace std;
inline int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
typedef long long LL;
typedef pair<int, int>PII;
const int N = 400100;
int n;
bool st[N];
vector<int>a, b;
void solve() {
cin >> n;
a.clear();
b.clear();
memset(st, 0, sizeof st);
for (int i = 1; i <= n; ++i) {
int x; scanf("%d", &x);
st[x] = true;
}
for (int i = 1; i <= 2 * n; ++i) {
if (st[i])a.push_back(i);
else b.push_back(i);
}
int l = 0, r = n, L, R;
while (l < r) { //求出
int mid = l + r + 1 >> 1;
bool flag = true;
for (int i = 0; i < mid; ++i) {
if (a[i] > b[n - mid + i]) {
flag = false;
}
}
if (flag)l = mid;
else r = mid - 1;
}
R = l;
l = 0, r = n;
while (l < r) {
int mid = l + r + 1 >> 1;
bool flag = true;
for (int i = 0; i < mid; ++i) {
if (a[n - mid + i] < b[i]) {
flag = false;
}
}
if (flag)l = mid;
else r = mid - 1;
}
L = l;
cout << R - n + L + 1 << endl;
}
int main() {
int t; cin >> t;
while (t--)
solve();
return 0;
}