张小凡vip
码龄13年
关注
提问 私信
  • 博客:9,164,579
    社区:3,847
    动态:16
    9,168,442
    总访问量
  • 916
    原创
  • 124
    排名
  • 8,989
    粉丝
  • 14
    铁粉
  • 学习成就

个人简介:2012年中级职称软件设计师; 2017年高级职称项目管理师; 2018年CSM敏捷认证; 2019年csdn20周年直播嘉宾; 2020年高级健康管理师; 清华大学出版社《MongoDB游记》数据库教程书作者。 专注于数据挖掘技术与大数据,云计算与存储等技术的学习与研究。 擅长系统响应式开发、数据采集数据清洗和数据分析,分布式云存储运算等技术。 熟悉数据的采集、数据的清洗(ETL)、存储(Data Storage)、挖掘(Data Mining)整个流程。 熟悉后台系统、云存储计算平台的搭建,擅长解决架构过程中遇到的疑难问题。 常用开发语言:java、python、c#、perl、sql。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:贵州省
  • 加入CSDN时间: 2011-07-01
博客简介:

直到世界的尽头

博客描述:
计算机的世界有无数道门窗 无论我们打开哪一道 都能收获无穷尽的风景
查看详细资料
  • 原力等级
    成就
    当前等级
    7
    当前总分
    4,735
    当月
    51
个人成就
  • 《MongoDB游记》作者
  • 博客专家认证
  • 获得1,858次点赞
  • 内容获得1,022次评论
  • 获得6,420次收藏
  • 代码片获得5,488次分享
创作历程
  • 8篇
    2024年
  • 11篇
    2023年
  • 15篇
    2022年
  • 26篇
    2021年
  • 74篇
    2020年
  • 72篇
    2019年
  • 161篇
    2018年
  • 114篇
    2017年
  • 74篇
    2016年
  • 127篇
    2015年
  • 157篇
    2014年
  • 180篇
    2013年
成就勋章
TA的专栏
  • 人工智能快速入门应用
    付费
    12篇
  • 大数据-flink
    付费
    7篇
  • spark on k8s
    付费
    12篇
  • 技术合伙人必备攻略
    付费
    1篇
  • linux基础与shell编程
    付费
    31篇
  • hadoop从基础到实战
    付费
    20篇
  • java从基础到实战
    付费
    34篇
  • 单点登录运用和解析
    付费
    18篇
  • mongodb基础与运用
    付费
    20篇
  • 遇到问题解决方案集锦
    付费
    266篇
  • hbase
    付费
    15篇
  • 数据挖掘
    4篇
  • flink
  • Maven运用
    23篇
  • 响应式开发
    6篇
  • 数据采集
    18篇
  • perl语言的学习和应用
    14篇
  • 项目管理
    8篇
  • mongodb
    57篇
  • c#
    33篇
  • excel
    8篇
  • tc
    2篇
  • myWork
    13篇
  • web
    142篇
  • network
    8篇
  • sqlserver
    12篇
  • network coding
    1篇
  • java
    267篇
  • data mining
    4篇
  • map developing
    16篇
  • system
    8篇
  • linux
    59篇
  • perl
    27篇
  • mysql
    32篇
  • theory
    1篇
  • online store
    8篇
  • think in code
    2篇
  • Coders at work
    6篇
  • regular expression
    4篇
  • maven
    28篇
  • IDE
    45篇
  • tomcat
    27篇
  • apache
    3篇
  • svn
    4篇
  • jenkins
    1篇
  • checkstyle
    3篇
  • hadoop
    42篇
  • virtual machine
    8篇
  • ssh
    29篇
  • multithreading
    6篇
  • 算法
    1篇
  • php
    7篇
  • nginx
    10篇
  • js
    28篇
  • shiro
    6篇
  • 神经网络
    2篇
  • hibernate
    1篇
  • springMVC
    11篇
  • 前端ps
    3篇
  • android
    7篇
  • 面试题
    1篇
  • git
    11篇
  • word
    1篇
  • 响应式开发
    7篇
  • 单点登录sso
    16篇
  • gradle
    8篇
  • 数据分析
    16篇
  • web模块积累
    47篇
  • 支付
    2篇
  • 项目管理
    3篇
  • 数据仓库
    47篇
  • 云存储云计算
    85篇
  • 运维
    3篇
  • python
    71篇
  • 架构
    3篇
  • SpringBoot
    13篇
  • mac
    1篇
  • redis
    5篇
  • kafka
    7篇
  • EFK
    5篇
  • 数据采集
    9篇
  • spark
    10篇
兴趣领域 设置
  • 大数据
    hadoophivestormsparketl
游记

数据库MongoDB实战

20201027143542346.jpg

京东 当当 天猫

独立博客: www.525.life
创作活动更多

HarmonyOS开发者社区有奖征文来啦!

用文字记录下您与HarmonyOS的故事。参与活动,还有机会赢奖,快来加入我们吧!

0人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

遇到问题--AttributeError: Can only use .cat accessor with a ‘category‘ dtype

方法,这是分类数据类型的访问器,而不是字符串连接的方法。你应该使用字符串连接的方法来实现这个目标。类型的列进行操作,应使用与该数据类型对应的访问器或方法。例如,如果列是字符串类型,可以使用。错误通常在使用 Pandas 库时出现,特别是在尝试对非分类数据类型(错误,并正确处理 Pandas 数据框中的分类操作。转换为字符串类型,然后将它们连接起来,但你使用的是。运算符将两个字符串列连接起来,并将结果存储在新的。这样,可以正确地将两列字符串连接在一起,而不会触发。首先,确保你操作的列是。列转换为字符串类型。
原创
发布博客 2024.11.16 ·
38 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

遇到问题--AttributeError: Can only use .str accessor with string values

如果你确实需要对非字符串类型的列进行操作,应使用与该数据类型对应的访问器或方法。例如,如果列是数值类型,可以使用数值操作方法。错误通常在使用 Pandas 库时出现,特别是在尝试对非字符串类型的列应用字符串操作时。错误,并正确处理 Pandas 数据框中的字符串操作。如果列的数据类型不是字符串,可以将其转换为字符串类型。首先,确保你操作的列是字符串类型的。如果你尝试对非字符串类型的列使用。str需要修改为 astype(str)访问器只能用于字符串类型的列(即。属性来检查列的数据类型。
原创
发布博客 2024.11.16 ·
37 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数据分析和数据挖掘的区别在哪

目标:数据分析侧重于解释数据,数据挖掘侧重于发现模式。方法:数据分析主要使用统计和可视化技术,数据挖掘使用算法和模型。应用场景:数据分析侧重于业务报告和运营优化,数据挖掘侧重于发现新知识和新模式。数据规模:数据分析处理中小规模数据,数据挖掘处理大规模数据。结果的可解释性:数据分析的结果通常更易于解释。虽然它们有所区别,但在实际应用中,数据分析和数据挖掘常常结合使用,以提供全面的洞察和解决方案。
原创
发布博客 2024.11.11 ·
988 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

Hadoop积累---Hadoop判断job和map的开始和结束(带源码)

命令行工具:使用和等命令查询Job和Map任务的状态。Web UI:访问JobTracker/ResourceManager的Web界面查看Job和Map任务的进度。API:在应用程序中使用Hadoop API监控Job和Map任务的状态。日志文件:查看Hadoop生成的日志文件以获取Job和Map任务的状态。监控工具:使用第三方监控工具提供更详细的监控信息。通过这些方法,你可以有效地监控Hadoop中的Job和Map任务的开始和结束。
原创
发布博客 2024.11.11 ·
397 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

paddleOCR识别源码

发布资源 2024.10.20 ·
zip

基于PaddleSpeech实现语音识别

遍历每一个文件,将它们分别送入ASRExecutor进行识别,所有识别文本集中保存到列表words里,最终写入result.csv文件。通过auditok.split来对音频进行切分,切分后新建目录:change/audio/文件名/,将文件存入该目录。一段python办公自动化抖音广告语,因为有背景音乐,所以判断为Music。执行后qiefen(“1.wav”)后,可以把1.wav进行切分。PaddleSpeech识别最长语音为50s,故需要切分。这段广告语被完整识别出来,唯一的问题是不带标点符号。
原创
发布博客 2024.10.20 ·
567 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

基于paddlepaddle客户画像分析

目前在实际的业务中,需要对原始数据做数据标注,标注后的数据格式整理为JSON如下:“tag”: “初始第一次开始”这里的tag标注是一个层次分类。开始训练的一部分数据是人工标注的监督数据,那么对于新的数据,就是无监督数据,因此需要有一个模型来解决此问题。PaddleNLP[1]是一款简单易用且功能强大的自然语言处理和大语言模型(LLM)开发库。聚合业界优质预训练模型并提供开箱即用的开发体验,覆盖NLP多场景的模型库搭配产业实践范例可满足开发者灵活定制的需求。
原创
发布博客 2024.10.20 ·
1160 阅读 ·
21 点赞 ·
0 评论 ·
26 收藏

paddleOcr记录

情况1:默认不需要标注电能表样本、训练电能表OCR模型,需调用PaddleOCR出识别字符,对识别信息进行提取情况2:需要从无到有标注OCR样本,或已有样本及标签文件,需训练电能表OCR模型,调用OCR模型识别样本字符,对识别信息进行提取OCR的处理包含两个流程:1-字符检测,2-字符识别。两个流程需要两种不同的数据集格式,如字符检测部分,样本内容主要包含字符图像与字符对应的坐标(参考dataset/ctw1500数据集),
原创
发布博客 2024.10.20 ·
781 阅读 ·
9 点赞 ·
0 评论 ·
8 收藏

(十二)人工智能应用--深度学习原理与实战--模型编译及训练参数的选择

神经网络训练要解决的问题其实是以最快的速度将误差函数(Loss)降到最小值、从而确定最优的网络参数。人工智能梯度通常指的是在机器学习和深度学习中使用的梯度,用于指示损失函数在某一点的变化速率和方向。在神经网络中,梯度表示损失函数相对于模型参数的变化率,可以帮助机器学习模型进行优化和参数更新。具体来说,人工智能梯度是指损失函数对于模型参数的偏导数,通常通过反向传播算法计算得到。梯度的方向指示了参数更新的方向,梯度的大小则表示了参数更新的步长。
原创
发布博客 2024.06.11 ·
576 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

(十一)人工智能应用--深度学习原理与实战--实现泰坦尼克号生存者预测案例Titanic Survival

泰但尼克号生存者预测(Titanic Survival)任务要求根据给定的1300余位乘宫的特征(姓名、性别、年龄、舱位等】及幸存情况(0-死亡,1-幸存】建立神经网络模型,能够较内准确地预测乘客样本的幸存情况。我们首先对原数据进行了多种预处理,目的是提高数据的质量,进而提升模型的性能。应熟练掌握常用的数据预处理方法。接下来,我们基于序贯模式(Sequential)搭建了包含多个全连接层(Dense层)的神经网络、需熟练掌握全连接网络层的添加方法及智数含义。
原创
发布博客 2023.09.07 ·
880 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

(十)人工智能应用--深度学习原理与实战--模型的保存与加载使用

Tensorflow提供了灵活的模型保存方案,我们可以将训练好的模型保存,之后可以直接加载使用,而无需重复建模训练。方案1:保存全模型方法可以将网络结构、权重信息、以及编译配置等一并保存,加载即可直接使用。方案2:保存权重方法允许仅保存网络的权重信息使用时要有搭建好的网络,无需训练。方案3:保存网络结构的方法允许仅保存网络层的构成而不保存权重,常用于恢复网络结构。模型的保存与加载是十分常用的功能,应熟练掌握。
原创
发布博客 2023.08.10 ·
1092 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

(九)人工智能应用--深度学习原理与实战--前馈神经网络实现MNST手写数字识别

MNIST手写数字识别是神经网络实现的第一个案例,这是一个简单的图像识别应用,我们使用Keras构建了只有两个全连接(Dense)的前馈神经网络,取得了不错的识别准确率。通过本任务大家应对于Keras构建前馈神经网络(使用序贯式模型)的过程更加熟悉,理解和掌握增加Dense层的方法及参数的含义。记住模型构建的一般步骤是 加载及预处理数据、建模【添加网络层)、编译、训练、评估、预测,并掌握Tensorflow (Keras)中对应的方法。
原创
发布博客 2023.08.08 ·
827 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

(八)人工智能应用--深度学习原理与实战--前馈神经网络机制解析

本章节我们了解了前馈神经网络的核心机制,包括感知机(最简单的前馈网络)、前馈与反向传擂、权重与偏移值数、激活函数的作用及类型。前馈神经网络是目前使用最广泛的神经网络之一,在图像识别和自然语言处理领域主流的两大神经网络类型——卷积神经网络(CNN)和循环神经网络(RNN)都属于前馈网络。感知机的原理、反向传擂机制、权重及偏移值箸数、以及激活函数的作用是重点,也是后续学习的前置基础,需要熟练掌握。
原创
发布博客 2023.07.24 ·
515 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

(七)人工智能应用--深度学习原理与实战--使用Keras搭建序贯式模型

1、KerasAPI已经被集成到TensorfLow2.×版本中,作为官方推荐的神经网络API。使用Keras可以非常方便地、模块化地搭建神经网络、添加多个层、并编译、训练及评估预测。2、Keras以层(Layers)为组件搭建神经网络,有两种基本模式—------序贯模式(SequentiaL)和函数式模式(FunctionaL),需要理解两种方式的特点和区别。3、Keras可以使用add方法或列表方法向序贯模型中添加网络层。
原创
发布博客 2023.07.21 ·
305 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

(六)人工智能应用--深度学习原理与实战--理解张量与运算图

1.张量(Tensor)是神经网络的基本数据结构,本质上是一种维度任意的多维数据容器。2.深度学习中使用张量来表示各种数据,如向量数据、时间序列数据、图像数据、视频数据等,需要熟悉它们的形状格式,在神经网络的训练中会经常用到。3.计算图是张量计算过程的逻辑表示,图运算非常适用于神经网络这种大规模运算场景,配合GPU的并行计算能门能够大幅提高运算效率。
原创
发布博客 2023.07.13 ·
907 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

(五)人工智能应用--深度学习原理与实战--Linux系统Tensorflow平台搭建

1.TensorfLow是目前企业应用最为广泛的深度学习框架,我们在Linux操作系统下完成了TensorfLow的安装及基于NVIDIA GPU的Cuda (GPU并行计算框架)、cudnn(深度学习加速平台)的安装配置。2.需要先安装python环境,建议使用Python的Anaconda发行版,该版本集成了多个科学计算包,广泛应用于数据处理与人工智能领域。3.TensorfLow、Cuda和cudnn的版本存在不兼容的情况,需要提前查询相应的对应关系。
原创
发布博客 2023.07.03 ·
1135 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

(四)人工智能应用--深度学习原理与实战--Windows系统Tensorflow平台搭建

1.TensorfLow是目前企业应用最为广泛的深度学习框架,我们在Windows操作系统下完成了Tensorflow的安装及基于NVIDIA GPU的Cuda(GPU并行计算框架)、cudnn(深度学习加速平台)的安装配置。2.需要先安装python环境,建议使用Python的Anaconda发行版,该版本集成了多个科学计算包,广泛应用于数据处理与人工智能领域。3.TensorfLow、 cuda和cudnn的版本存在不兼容的情况,需要提前查询相应的对应关系。
原创
发布博客 2023.06.13 ·
1064 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

(三)人工智能应用--深度学习原理与实战--神经网络的工作原理

神经网络本质上是一个实现深度学习的多层数学框架,每一层都对输入数据做一定的转换,在训练(学习)的过程中不断调整优化各层的权重参数,最终得到能够准确映射输入数据和目标输出的网络模型。优化器的作用是依据误差值来逐步调整各层的权重然数,以降低误差值。这一过程的算法叫做反向传播(Backpropagation )算法,梯度下降(GD)是反向传播算法中常用的方法。通过在大量数据上多次循环训练,最终可以得到最小化的损失函数,从而得出训练好的神经网络(即能够准确映射输入数据和目标输出的深度学习模型)。
原创
发布博客 2023.05.16 ·
906 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

(二)人工智能应用--深度学习原理与实战--机器学习简史

2010年至今,在硬件、数据、算法及框架等几个方面的推动下,深度学习技术进入蓬勃发展期,目前已经在感知类任务中占据主导地位。人工智能被称为新一轮工业革命,相关的岗位数量急剧增长。与机器学习相关的主要技术包括:Python语言、Scikit-Learn、TensorFLow(Keras) 、Pytorch等框架以及相关的开发库。
原创
发布博客 2023.03.28 ·
315 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

(一)人工智能应用--深度学习原理与实战--初识深度学习

人工智能是一个综合性的概念,其方法不仅仅包括机器学习和深度学习,还包括如预定义规则的专家系统。机器学习(包括深度学)的本质是让计算机自主地从数据中学习出规则,而非预定义规则。与经典的编程范式不同,机器学习的范式是输人数据和笞案(即标签)、输出规则(即模型),从而可以使用模型预测新的数据输入。深度学习是机器学习的一个分支(子集),从技术上是一种学习数据表示的多层框架(传统的机器学习算法通常只有一到两个表示层),深度学习的分层表示模型即神经网络。
原创
发布博客 2023.03.23 ·
683 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多