关于数学的十万个为什么

🌞欢迎来到人工智能的世界 
🌈博客主页:卿云阁

💌欢迎关注🎉点赞👍收藏⭐️留言📝

🌟本文由卿云阁原创!

📆首发时间:🌹2025年2月15日🌹

✉️希望可以和大家一起完成进阶之路!

🙏作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢!


目录

简单运算

集合

区间和不等式

充分必要条件

函数

向量

简单运算

为啥要学习(整数或者是小数的四则运算)?

母亲一共给了 24 元零花钱,让小明和小红平均分着花,看看每个人能花多少钱?

小明走进了一家文具店,准备买学习用品。他看到:

一支铅笔 3 元 ✏️

一本笔记本 12 元 📖

一个橡皮 1元 🔲

他买了两个铅笔和一个橡皮一共多少钱?

他付 10 元,店员要找回多少?

为啥要学习负数?

负数 - 正数 代表欠更多的钱,余额变小。

上午欠我3元,下午欠我2元,总共欠我多少钱?

负数 + 正数 代表挣,余额变大。

晚上你收到了10元的红包,你现在有多少钱?

为啥要学习绝对值?

绝对值表示的是数的大小,而不考虑方向,就是把正数不变,负数变成正数


集合

为啥要学习集合?

因为方便运算

集合(Set) 就是一群有共同特点的东西

比如:

  • 篮球队员的名单
  • 1 到 10 之间的偶数
  • 班级里喜欢数学的同学

这些东西都有个特点,就是它们可以被看作一个“整体”!

数学上,我们一般用 大括号 表示集合,比如:

✅ 1 到 10 之间的偶数:

{2,4,6,8,10}

✅ 小明有的玩具:

{汽车,飞机,机器人}

✅ 小华有的玩具:

{飞机,积木,机器人}

集合可以帮我们解决哪些问题?

去掉重复的东西 🧹

比如,你的文具盒里有:

{铅笔,橡皮,铅笔,尺子,橡皮}

如果我们用集合来表示,它就会自动去掉重复的部分:

{铅笔,橡皮,尺子}

集合不管有多少个一样的东西,它只算一个,这样就能帮我们整理数据!

找出共同的部分 👬

比如,小明和小华的玩具集合是:

  • 小明的玩具:{汽车,飞机,机器人}
  • 小华的玩具:{飞机,积木,机器人}

他们都有的玩具是什么?就是两个集合的交集

{飞机,机器人}

这样,我们就可以轻松找出共同的东西啦!🎯


区间和不等式

为啥要学习区间?

区间(Interval)是一个表示范围的概念
我们用区间来表示一个数值范围,这个范围可以是有限的,也可以是无限的。

比如一个女生找男朋友的标准。(可以用区间也可以用集合表示)


充分必要条件

充分条件 就是 如果这个条件成立,那么某件事情肯定成立

举个例子:

“吃了冰淇淋,肚子就会疼”

        这里“吃了冰淇淋”就是一个充分条件,因为只要你吃了冰淇淋,肚子疼就一定会发生。也就是

说,如果你吃了冰淇淋,肚子疼的事就一定会发生。

    但这并不意味着肚子疼只会因为吃冰淇淋,可能还有别的原因。只是吃冰淇淋是让你肚子疼的

条件。

     肚子疼就是一个必要条件

结婚证是结婚的必要且充分条件

     你结婚一定需要结婚证(必要条件),而且只要有了结婚证,结婚就算成了充分条件)。

换句话说,结婚证既确保你结婚了(充分条件),又是必须要有的(必要条件)。


函数

为啥要学函数?(为了预测)
由于x肯定要有一个范围的,这个范围就叫做定义域
函数可以分成很多种,下面重点讲4个函数
指数函数

 在数学里,指数函数是这样的:我们有一个底数,然后把它不断乘自己,这个“次数”就叫做指数

   比如,假设我们有一个底数 2,如果我们让它重复乘自己多次,我们就得到了指数函数的结果。

用数学表示就是:

假设你有 2 个苹果,每天苹果的数量翻倍(每一天苹果的数量变成原来的2倍)。那会发生什么呢?

第一天你有 2 个苹果。

第二天,你的苹果数量就变成了 2 × 2 = 4 个。

第三天,你的苹果数量就变成了 4 × 2 = 8 个。

第四天,你的苹果数量又变成了 8 × 2 = 16 个。

幂函数

对数函数
三角函数

向量

 向量的定义为具有大小和方向的量。

研究对象:向量

       向量是有方向的线段,线段的长度代表向量的大小,箭头代表向量的方向。

几何视角和坐标表示

现实视角

向量可以代表着一些信息

向量的大小

向量的内积

坐标视角

几何视角

       从几何角度来看,向量内积与向量的长度和它们之间的夹角有关。具体地,两个向量的内积可以表示为:

加法和减法
平行垂直

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卿云阁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值