🌞欢迎来到人工智能的世界
🌈博客主页:卿云阁💌欢迎关注🎉点赞👍收藏⭐️留言📝
🌟本文由卿云阁原创!
📆首发时间:🌹2025年2月15日🌹
✉️希望可以和大家一起完成进阶之路!
🙏作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢!
目录
简单运算
为啥要学习(整数或者是小数的四则运算)?
母亲一共给了 24 元零花钱,让小明和小红平均分着花,看看每个人能花多少钱?
小明走进了一家文具店,准备买学习用品。他看到:
一支铅笔 3 元 ✏️
一本笔记本 12 元 📖
一个橡皮 1元 🔲
他买了两个铅笔和一个橡皮一共多少钱?
他付 10 元,店员要找回多少?
为啥要学习负数?
负数 - 正数 代表欠更多的钱,余额变小。
上午欠我3元,下午欠我2元,总共欠我多少钱?
负数 + 正数 代表挣钱,余额变大。
晚上你收到了10元的红包,你现在有多少钱?
为啥要学习绝对值?
绝对值表示的是数的大小,而不考虑方向,就是把正数不变,负数变成正数
集合
为啥要学习集合?
因为方便运算
集合(Set) 就是一群有共同特点的东西。
比如:
- 篮球队员的名单
- 1 到 10 之间的偶数
- 班级里喜欢数学的同学
这些东西都有个特点,就是它们可以被看作一个“整体”!
数学上,我们一般用 大括号 表示集合,比如:
✅ 1 到 10 之间的偶数:
{2,4,6,8,10}
✅ 小明有的玩具:
{汽车,飞机,机器人}
✅ 小华有的玩具:
{飞机,积木,机器人}
集合可以帮我们解决哪些问题?
✅ 去掉重复的东西 🧹
比如,你的文具盒里有:
{铅笔,橡皮,铅笔,尺子,橡皮}
如果我们用集合来表示,它就会自动去掉重复的部分:
{铅笔,橡皮,尺子}
集合不管有多少个一样的东西,它只算一个,这样就能帮我们整理数据!
✅ 找出共同的部分 👬
比如,小明和小华的玩具集合是:
- 小明的玩具:{汽车,飞机,机器人}
- 小华的玩具:{飞机,积木,机器人}
他们都有的玩具是什么?就是两个集合的交集:
{飞机,机器人}
这样,我们就可以轻松找出共同的东西啦!🎯
区间和不等式
为啥要学习区间?
区间(Interval)是一个表示范围的概念。
我们用区间来表示一个数值范围,这个范围可以是有限的,也可以是无限的。
比如一个女生找男朋友的标准。(可以用区间也可以用集合表示)
充分必要条件
充分条件 就是 如果这个条件成立,那么某件事情肯定成立。
举个例子:
“吃了冰淇淋,肚子就会疼”
这里“吃了冰淇淋”就是一个充分条件,因为只要你吃了冰淇淋,肚子疼就一定会发生。也就是
说,如果你吃了冰淇淋,肚子疼的事就一定会发生。
但这并不意味着肚子疼只会因为吃冰淇淋,可能还有别的原因。只是吃冰淇淋是够让你肚子疼的
条件。
肚子疼就是一个必要条件
结婚证是结婚的必要且充分条件
你结婚一定需要结婚证(必要条件),而且只要有了结婚证,结婚就算成了(充分条件)。
换句话说,结婚证既确保你结婚了(充分条件),又是必须要有的(必要条件)。
函数

在数学里,指数函数是这样的:我们有一个底数,然后把它不断乘自己,这个“次数”就叫做指数。
比如,假设我们有一个底数 2,如果我们让它重复乘自己多次,我们就得到了指数函数的结果。
用数学表示就是:
假设你有 2 个苹果,每天苹果的数量翻倍(每一天苹果的数量变成原来的2倍)。那会发生什么呢?
第一天你有 2 个苹果。
第二天,你的苹果数量就变成了 2 × 2 = 4 个。
第三天,你的苹果数量就变成了 4 × 2 = 8 个。
第四天,你的苹果数量又变成了 8 × 2 = 16 个。







向量
向量的定义为具有大小和方向的量。
研究对象:向量
向量是有方向的线段,线段的长度代表向量的大小,箭头代表向量的方向。
几何视角和坐标表示
现实视角
向量可以代表着一些信息
向量的大小
向量的内积
坐标视角
几何视角
从几何角度来看,向量内积与向量的长度和它们之间的夹角有关。具体地,两个向量的内积可以表示为:

