🌞欢迎来到AI环境的世界
🌈博客主页:卿云阁💌欢迎关注🎉点赞👍收藏⭐️留言📝
🌟本文由卿云阁原创!
🌠本阶段属于练气阶段,希望各位仙友顺利完成突破
📆首发时间:🌹2025年3月22日🌹
✉️希望可以和大家一起完成进阶之路!
🙏作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢!
目录
0. 论文基本信息
Paper地址:https://arxiv.org/abs/2202.04996
Code地址:https://github.com/YangYimin98/AA-TransUNet/tree/main/Models
[引用] Yang Y, Mehrkanoon S. Aa-transunet: Attention augmented transunet for nowcasting tasks[C]//2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022: 01-08.
1.背景介绍
近年来,基于数据驱动建模的方法在许多具有挑战性的气象应用中引起了广泛关注,包括天
气要素预测。本文介绍了一种基于TransUNet的新型数据驱动预测模型,用于降水短时预报任务。
TransUNet模型将Transformer和U-Net模型结合在一起,在医学分割任务中已经成功应用。在这
里,TransUNet被用作核心模型,并进一步配备了卷积块注意模块(CBAM)和深度可分离卷积
(DSC)。
提出的Attention Augmented TransUNet(AA-TransUNet)模型在两个不同的数据集上进
行了评估:荷兰降水图数据集和法国云覆盖数据集。所得结果显示,提出的模型在两个测试数据集
上均优于其他受查模型。此外,提供了对提出的AA-TransUNet的不确定性分析,以提供有关其预
测的额外见解。
2.新方法
本节介绍了提出的AA-TransUNet模型,该模型使用TransUNet 作为核心模型,并对其进行扩
展以减少参数并提高预测性能。然后,我们研究了提出的模型在降水短时预测任务中的应用。
A. 提出的模型
3.实验
在这一部分,给出了在两个数据集(降水图和云覆盖数据集)上进行的实验的详细信息。
A. 降水图短临预测
数据来自荷兰皇家气象研究所(Koninklijk Nederlands Meteorologisch Instituut,KNMI),
先前已在中使用过。该数据涵盖了2016年至2019年间荷兰王国及其邻国的降水信息。数据使用位
于De Bilt和Den Helder的两个C波段多普勒天气雷达站收集。卫星每五分钟收集一次降水数据,并
将其以图像格式存储。降水图的总数为420,000张。每个原始图像的尺寸为756 x 700,每个像素的
值表示过去五分钟内每平方千米收集到的降水总量,并以整数格式存储。
B. 云覆盖预测
云覆盖数据集在中引入,并先前在中使用过。云覆盖数据集根据云的高度和类型被分成16
类。此分类是通过Meteosat Second Generation(MSG)拍摄的各种可见光和红外线通道图像计
算的,MSG是一颗位于0度经度的静止卫星,于2017年和2018年在法国使用。卫星每15分钟收集
一次数据,包含3712 x 3712大小的图像。
在云覆盖图像中,每个像素可能有15种不同的值。云覆盖状态的详细信息在表III中报告。数据
根据图像中是否有云覆盖而进行二值化处理。更具体地说,与[5]一样,将值1到4转换为0(无
云),将值5到15转换为1(有云)。随后,根据法国的边界,将图像裁剪为256 x 256的大小[6]。
4.结果分析
本文提出了一种新颖的Attention Augmented TransUNet模型(AA-TransUNet),用于降水现
在预测任务。我们展示了将卷积块关注模块(CBAM)和深度可分离卷积(DSC)纳入经典
TransUNet模型中,可以提高性能,同时显著减少模型解码器部分的参数数量。我们展示了所提出
模型在两个现在预测任务上的适用性,即降水和云层现在预测。实验结果表明,AA-TransUNet模
型优于原始TransUNet模型和其他检验的模型。