🌞欢迎来到人工智能的世界
🌈博客主页:卿云阁💌欢迎关注🎉点赞👍收藏⭐️留言📝
🌟本文由卿云阁原创!
📆首发时间:🌹2025年5月20日🌹
✉️希望可以和大家一起完成进阶之路!
🙏作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢!
目录
文章一:多目标优化和可解释机器学习
论文题目:基于多目标优化和可解释机器学习的废水处理工艺增强
论文信息:Journal of Environmental Management ( IF 8.0 ) Pub Date : 2024-06-13 , DOI: 10.1016/j.jenvman.2024.121430
主要内容:
本文提出了废水处理过程多目标优化(WTPMO)框架,为WTP参数设置提供决策建议。首
先,开发了基于极端梯度提升(XGB)和贝叶斯优化(BO)的预测模型,用于预测不同进水水质
和工艺参数设置的出水水质(EQ)和能耗(EC)。然后,利用SHApley Additive exPlanations
(SHAP)算法来补充机器学习的可解释性,以定量评估不同特征对预测目标的影响。最后,引入
非支配排序遗传算法II(NSGA-II)和理想解相似性排序偏好技术(TOPSIS)来解决多目标优化问
题并进行决策。 WTPMO 的适用性已在基准仿真模型 1 (BSM1) 上得到验证。
结果表明,BOXGB对EQ和EC实现了准确预测,R值分别为0.923和0.965,表明BO可以有效地
选择XGB中的模型超参数。在SHAP的基础上补充了模型的可解释性,充分解释了进水水质和决策
变量如何影响WTP的EQ和EC。此外,基于NSGA-II和TOPSIS确定优化工艺参数,在保证水质达
标的同时,EC优化率为1.552%。 总体而言,本研究能够有效实现WTP的优化,保证出水水质达
标的同时降低能耗,协助污水处理厂(WWTP)实现更加智能、高效的运维管理,为环保提供有
力支撑。保护和可持续发展目标。
使用的方法:
本文提出的WTPMO框架包括构建预测模型、解释预测模型、求解问题和做出决策,
如图图所示。第1部分表示基于BOXGB构建预测模型,第2部分表示对构建的预测模型进行解释。
SHAP,第3部分表示基于NSGA II的MOO问题求解,第4部分表示基于TOPSIS的Pareto边界决
策。(NSGA II 为 TOPSIS 提供候选集,TOPSIS 实现从 “多解” 到 “唯一解” 的转化)
论文局限性:
(1)未来的研究可以通过时间序列预测,提前对进水进行预测,进一步纳入前馈控制。
(2)由于本研究模型中涉及的输入特征数量较少,因此没有基于可解释方法对输入进行特征选
择,该方法可用于具有许多输入特征的预测任务的特征选择。
文章2:信号分解和动态特征选择
期刊信息:
Environmental Research (中科院2区, JCR Q1, IF=7.7)
作者单位:
基于信号分解和动态特征选择的混合深度学习模型,用于预测污水处理厂的进水参数
链接:
https://www.sciencedirect.com/science/article/pii/S0013935124025192?ref=pdf_download&fr=RR-2&rr=932902ab39ffcb8a
DOI: 10.1016/j.envres.2024.120615
使用的方法:
(1) 分解:在模型的第一部分,使用信号分解方法对原始输入时间序列数据进行分解。通过将数
据分解为多个固有模态函数(IMF)和残差,这些方法捕获了不同时间尺度上的动态特征,从而消
除了噪声并揭示了数据中的潜在趋势。
(2) 动态特征选择:在第二部分中,采用动态特征选择机制,根据分解的子序列和残差选择特
征。通过实时相关性分析,识别出与预测最相关的特征。然后应用PCA来降低维度,最小化冗余,
优化特征表示,从而提高模型的预测效率和准确性。
(3) 预测:在第三部分中,将每个选定的IMF和残差输入深度学习模型进行预测。使用长短期记
忆(LSTM)网络和一维卷积神经网络(lD CNN)的组合,其中LSTM捕获序列数据中的长期依赖
关系,CNNextract从时间序列中提取局部特征,从而提高预测的准确性和性能。
(4) 重建:在最后一步,重建每个子序列的预测结果,以获得整体预测输出。将所有lMF和残差
的预测结合起来,以覆盖原始时间序列中的整体动态变化,从而实现更准确的预测。为了确保非负
性,在重建过程中实施了非负性约束。
本研究中开发的混合LSTM 1DCNN模型结构如图2所示。模型前端的LSTM层用于捕获数据中
的长期依赖关系,这对于理解时间序列的动态特性至关重要。随后,CNN层通过卷积和池化操
作,有效地从ISTM层处理的时间序列数据中提取局部时空特征。该架构不仅增强了模型识别时间
序列深层特征的能力,还提高了预测的准确性和效率。
文章3:出水总氮和总能耗预测模型
论文题目:Prediction of effluent total nitrogen and energy consumption in wastewater treatment plants: Bayesian optimization machine learning methods
期刊:《Bioresource Technology》 JCR分区:9.7/Q1
原文链接:
https://www.sciencedirect.com/science/article/pii/S0960852424000634?via%3Dihub
造纸工业废水处理存在的一个主要问题是如何控制出水中的总氮含量和总能耗。选择废水处理
过程中进水水质和工艺控制指标作为输入特征,建立了出水总氮和总能耗预测模型。探讨了不同随
机种子下机器学习方法的预测性能,并使用贝叶斯算法进行超参数优化。结果表明,与传统的超参
数优化方法相比,经过贝叶斯优化和数据放大后,出水TN预测的判定系数(R2)分别提高了0.092
和0.067,达到0.725,均方根误差(RMSE)分别降低了0.262和0.215mg/L,达到1.673mg/L。在
TEC预测过程中,R2分别增加了0.068和0.042,达到0.884,均方根误差分别减少了232.444和
197.065千瓦时,达到1305.829千瓦时。研究对于提高工业废水处理的出水水质和降低能耗具有重
要的指导意义。
文章4:污水处理厂的集成实时智能控制
期刊:《Water Research》
题目:Integrated real-time intelligent control for wastewater treatment plants: data-driven
modeling for enhanced prediction and regulatory strategies(污水处理厂的集成实时智能控制:基
于数据驱动建模的预测能力提升与调控策略优化)
DOI:10.1016/j.watres.2025.123099
作者提出了一种创新的特征提取方法,通过高阶导数从实时在线数据中提取关键特征,以反应
底物浓度的二阶导数为核心,近似其高斯分布,进而获得稳态特征参数函数,用于构建数据驱动模
型。该模型能够实时更新,实现对硝化回流速率和氧气供应的精准动态调控,从而显著优化生物氮
去除过程。
本研究提出了一种创新的特征提取方法,旨在提高污水处理厂动态调控的成本效益与精准性。
该方法通过从关键底物变量的时间序列数据中提取动态特征,构建数据驱动模型并制定高效的实时
控制策略。研究结果显示,该数据驱动模型能够准确预测氨氮、总氮和生化需氧量的动态变化趋
势,具有较高的预测性能。相比传统的活性污泥ASM2D模型,该研究提出的创新方法显著提升了
计算效率,将模型参数校准时间从939.75秒缩短至87.52秒。系统采用NSGA-II多目标优化算法,
动态调控关键参数(如溶解氧传质系数KLa和硝化回流比NNR),以实现能耗与处理效率之间的平
衡。
同时,开发的实时控制策略在确保出水水质持续符合排放标准的前提下,实现了能耗的显著降
低,最高节约达24.3%。通过引入动态更新机制(每3小时更新模型参数),进一步增强了系统的
适应性和响应能力,能够及时应对废水处理过程中环境和工艺条件的动态变化。
综上,该方法通过直接从关键变量中提取动态生化特征,减少了对复杂水质、污泥和环境数据
集的依赖,为污水处理中的动态调控提供了一种高效、经济的解决方案,具有重要的实际应用价值
和推广潜力。
图1 基于机器学习的数据驱动模型与优化调控的流程图。图中包括(a)基于ASM2D模型的数据库;(b、e、f、g)特征提取过程;(c、h)建模过程;(d、i)优化调控过程
图1展示了污水处理厂生物脱氮(BNR)过程实时动态控制的数据驱动模型框架及其开发与应用流
程。首先,通过基于ASM2D模型模拟一年的运行数据,结合遗传算法标定关键动态参数,生成了
400批次的模拟数据,从而扩展了特征参数函数的适用范围,提高了模型的泛化能力与预测精度。
随后,通过高阶数学导数和高斯函数拟合方法,从模拟数据中提取特征参数,并建立了影响因素与
特征参数之间的多项式关系,为模型构建提供了有效的特征提取工具。在此基础上,通过特征参数
函数将进水条件转换为特征参数,结合高斯函数计算底物浓度的二阶导数,进一步通过积分得到动
态反应速率,并采用数值解法求解数据驱动模型以实现精准建模。最终,将数据驱动模型与
NSGA-II多目标优化算法相结合,用于优化废水处理厂的关键操作参数,实现能耗与出水水质之间
的最佳平衡,并通过实时动态调整确保系统运行的稳定性与效率。整体框架从特征提取到优化控
制,为废水处理厂的智能化动态调控提供了科学、有效的解决方案。
方法:
材料与方法本研究使用的数据包括2017年中国黑龙江省污水处理厂的日常运行数据和设计运
行参数。数据集由364组数据组成,采样频率为每天1组数据。数据预处理采用四分位数法,用中
位数代替离群值和缺失值。
文章5:低耗高效吸附预测
论文信息:Jinsheng Huang#, Waqar Muhammad Ashraf#, Talha Ansar#, Muhammad Mujtaba Abbas, Mehdi Tlija, Yingying Tang, Yunxue Guo, Wei Zhang*. 2025. Optimisation led energy-efficient arsenite and arsenate adsorption on various materials with machine learning, Water Research, 271, 122815.
全文链接:https://doi.org/10.1016/j.watres.2024.122815
针对上述科学问题,张伟教授团队利用机器学习(ML)技术,并结合变量重要性分析,提出了
一种高效且低能耗的优化砷吸附材料的方法。研究从核心数据库中收集了93篇文献中的1700组数
据样本,每个样本包括8个反应参数、材料结构特性和组成成分等关键变量。通过构建的
CatBoost、XGBoost和LGBoost三种ML模型对这些数据样本进行分析,旨在(1)预测不同材料对
As(III)和As(V)的吸附能力;(2)通过特征分析识别出最重要的影响因素,深入解析吸附机理;
(3)在保证能耗最低的条件下,优化砷吸附材料的性能;(4)将优化算法集成到一个Web网页
中,为实际水处理提供便捷的支持。该研究不仅为优化砷吸附材料提供了新的思路和方法,同时也
为实际应用提供了强有力的工具支持。
文章6:多目标优化问题
论文题目:Dynamic optimization of wastewater treatment process based on novel multi-objective ant lion optimization and deep learning algorithm
基于新方法的废水处理过程动态优化多目标蚁群优化与深度学习算法
论文摘要:
本文提出了一种基于多目标蚁狮优化算法(DMOALO)和深度学习算法的新型动态优化控制方
法,可在污水处理过程中同时优化能耗(EC)和出水水质(EQ)。为克服动态参数与性能指标之
间无明确函数关系的难题,构建了一种用于预测能耗和出水水质的深度信念网络(DBN)模型作
为目标函数。随后,采用DMOALO方法求解带约束的目标函数,并通过智能决策系统选择最优
解。最后,利用比例积分(PI)控制器跟踪控制这些最优动态参数。在基准模拟模型1(BSM1)
中对DBN-DMOALO-PI优化控制策略进行评估,仿真结果表明,该新型优化控制策略可在满足出
水水质参数达标的同时显著降低能耗,与PI优化控制策略相比,能耗降低了3.31%。因此,该方法
可有效降低污水处理过程成本,助力实现污水处理过程的碳中和目标。
因此,本研究主要分为以下三个部分:
首先,采用一种新的DBN模型来建立目标动态参数与EC和EQ之间的函数关系。
其次采用新型DMOALO算法求解目标函数约束条件下,选择最优解作为最优动态参数。
第三,跟踪最佳动态参数并由PI控制器控制。这一新策略的结果将为优化和控制提供更好的理解
废水处理工艺。
文章7:优化污水处理厂曝气工艺的出水水质与能耗
论文题目:Optimization of effluent quality and energy consumption of aeration process in wastewater treatment plants using artificial intelligence
在本文中,提出了一种耦合的人工智能模型,包括反向传播(BP)时间序列模型、粒子群优
化(PSO)和高斯分类。该模型旨在预测污水处理厂的出水水质,并优化曝气过程的能耗。模型输
入变量包括pH值、化学需氧量(COD)、总固体(TS)和氨氮,利用2023年3月至10月在西樵污
水处理厂记录的时间序列数据进行建模。模型的评估指标包括均方根误差和相关系数(R²)。不同
出水均值的BP时间序列模型的R²超过0.9,表明预测性能良好。与未分类的混合BP和PSO预测相
比,结合分类的混合BP和PSO预测进一步降低了空气流量。具体而言,使用混合BP和PSO预测及
分类时,空气流量与实际数据相比降低了30.9%。这些发现表明,我们提出的数据驱动方法有效地
平衡了出水水质的改善和能源消耗的最小化。这项工作为决策者优化污水处理厂提供了一种替代策
略 。
总结
优化算法在污水处理中的应用
异常参数检测
运行参数预测
多目标算法优化