胜者树与败者树

胜者树和败者树都是完全二叉树,是树形选择排序的一种变型。每个叶子结点相当于一个选手,每个中间结点相当于一场比赛,每一层相当于一轮比赛。不同的是,胜者树的中间结点记录的是胜者的标号;而败者树的中间结点记录的败者的标号。
胜者树与败者树可以在log(n)的时间内找到最值。任何一个叶子结点的值改变后,利用中间结点的信息,还是能够快速地找到最值。在k路归并排序中经常用到。

胜者树的一个优点是,如果一个选手的值改变了,可以很容易地修改这棵胜者树。只需要沿着从该结点到根结点的路径修改这棵二叉树,而不必改变其他比赛的结果。下面是选择一个最小的数字为最胜利者(见图1所示),第一次把各个数组里面的第一个元素都放进去,这是根据胜利树的规则两两比较,得到最小的值,第一次弄完之后,就得出1数字是胜利的,也就是1是最小的。在下一次输出第二小的数字时候,只需要把1所在的数组里面的元素加进去,然后从叶子节点到根节点一直比较得出第二小的值,这样就减少了很多次无用的比较(见图2所示)。

                        


问题:有20个有序数组,每个数组有500个uint变量,降序排序。要求从这10000个元素中选出最大的500个。
有人可能会有疑问,就是如果给定的是奇数个数组,那么这个胜者树是不是不能用了呢,其实是可以的。我们大不了可以加一个数组,把数组的个数凑成偶数。这个新加的数组中的所有元素置为极大值或者极小值。这样,这些元素虽然被构建到胜者树中,但是他们因为是极大或者极小的,所以不被纳入胜者树的计算结果中。所以不会产生影响。这样是比较浪费点空间。如果觉得不想浪费这么多的空间,其实还有个办法,那就是在构建胜者树的时候考虑奇偶。如果x是偶数,那么就分配2*x的空间,把 x-2x-1的元素都赋值。而第0个空间是不用的。第一个空间存储胜者树的根。如果是奇数的情况,算一下要用的节点数。2*(x + 1) - 1个,所以直接分配 2 *( x + 1) 个节点,把最后一个节点的值置为最大或者最小。下面给出程序代码:
#include<iostream>
#include<ctime>
#include<cmath>
#include<algorithm>
using namespace std;
#define INF 100000
#define N 10
typedef struct node{
	int data;
	int index;
	int which;
}Node;
int com(const void *a, const void *b){  
    if(*(int *)a > *(int *)b){  
        return 1;  
    }else if(*(int *)a < *(int *)b){  
        return -1;  
    }   
    return 0;  
}  
void adjustTreeForFirst(Node *tempArray, int len) {
	int i = len / 2;
	int j;
	while(i > 1) { //第0个单元不会用到,第一个为树的根
		for(j = i; j < (2*i-1); j += 2) {
			if(tempArray[j].data < tempArray[j+1].data) {
				tempArray[j / 2] = tempArray[j];
			} else {
				tempArray[j / 2] = tempArray[j+1];
			}
		}
		i /= 2;
	}
}
void get_data(int **a, int row, int col, int len) {
	int *result = new int[len];
	memset(result, 0, sizeof(int) * len);
	int i,j;
	Node *temp = new Node[row * 2];
	for(i = 0; i < row; i++) {
		temp[row + i].which = i;
		temp[row + i].index = 0;
		temp[row + i].data = a[i][0];
	}
	for(j = 0; j < len; j++) {
		adjustTreeForFirst(temp, 2 * row);
		result[j] = temp[1].data;
		if(temp[1].index + 1 < col) {
			temp[row + temp[1].which].data = a[temp[1].which][temp[1].index + 1];
			temp[row + temp[1].which].index = temp[1].index + 1;
			temp[row + temp[1].which].which = temp[1].which;
		} else {
			temp[row + temp[1].which].data = INF;
		}
	}
	cout << "required data:" << endl;
	for(i = 0; i < len; i++){  
        cout << result[i] << "\t";  
    }  
	delete []result;
	delete []temp;
}
int main() {
	const int row = 9;  
    const int col = 10;  
   
    int *a[row];  
    int i = 0, j = 0;  
    //分配内存空间   
    for(i = 0; i < row; i++){  
        a[i] = (int *)malloc(col * sizeof(int));     
    }  
      
    //初始化数组   
	cout << "raw data:" << endl;
    srand( time(NULL) );   
    for(i = 0; i < row; i++){  
        for(j = 0; j < col; j++){  
            a[i][j] = rand() % 300;
			cout << a[i][j] << "\t";
        }
    }  
    //排序   
	
    for(i = 0; i < row; i++){  
        qsort(a[i], col, sizeof(int), com);  
    }  
	get_data(a, row, col, 40);
	return 0;
}
败者树:
        败者树是胜者树的一种变体。在败者树中,用父结点记录其左右子结点进行比赛的败者,而让胜者参加下一轮的比赛。败者树的根结点记录的是败者,需要加一个结点来记录整个比赛的胜利者。采用败者树可以简化重构的过程。
 
胜者树与败者树 - 紫龍劍 - 倚天万里
Fig. 1
Fig. 1是一棵败者树。规定数大者败。
  1. b3 PK b4,b3胜b4负,内部结点ls[4]的值为4;
  2. b3 PK b0,b3胜b0负,内部结点ls[2]的值为0;
  3. b1 PK b2,b1胜b2负,内部结点ls[3]的值为2;
  4. b3 PK b1,b3胜b1负,内部结点ls[1]的值为1;
  5. 在根结点ls[1]上又加了一个结点ls[0]=3,记录的最后的胜者。
败者树重构过程如下:
  • 将新进入选择树的结点与其父结点进行比赛:将败者存放在父结点中;而胜者再与上一级的父结点比较。
  • 比赛沿着到根结点的路径不断进行,直到ls[1]处。把败者存放在结点ls[1]中,胜者存放在ls[0]中。
Fig. 2
       Fig. 2是当b3变为13时,败者树的重构图。
 
       注意,败者树的重构跟胜者树是不一样的,败者树的重构只需要与其父结点比较。对照Fig. 1来看,b3与结点ls[4]的原值比较,ls[4]中存放的原值是结点4,即b3与b4比较,b3负b4胜,则修改ls[4]的值为结点3。同理,以此类推,沿着根结点不断比赛,直至结束。

       败者树是胜者树的一种变体。在败者树中,用父结点记录其左右子结点进行比赛的败者,而让胜者参加下一轮的比赛。败者树的根结点记录的是败者,需要加一个结点来记录整个比赛的胜利者。采用败者树可以简化重构的过程。
 
胜者树与败者树 - 紫龍劍 - 倚天万里
Fig. 3
Fig. 3是一棵败者树。规定数大者败。
  1. b3 PK b4,b3胜b4负,内部结点ls[4]的值为4;
  2. b3 PK b0,b3胜b0负,内部结点ls[2]的值为0;
  3. b1 PK b2,b1胜b2负,内部结点ls[3]的值为2;
  4. b3 PK b1,b3胜b1负,内部结点ls[1]的值为1;
  5. 在根结点ls[1]上又加了一个结点ls[0]=3,记录的最后的胜者。
败者树重构过程如下:
  • 将新进入选择树的结点与其父结点进行比赛:将败者存放在父结点中;而胜者再与上一级的父结点比较。
  • 比赛沿着到根结点的路径不断进行,直到ls[1]处。把败者存放在结点ls[1]中,胜者存放在ls[0]中。
Fig. 4
       Fig. 4是当b3变为13时,败者树的重构图。
 
       注意,败者树的重构跟胜者树是不一样的,败者树的重构只需要与其父结点比较。对照Fig. 3来看,b3与结点ls[4]的原值比较,ls[4]中存放的原值是结点4,即b3与b4比较,b3负b4胜,则修改ls[4]的值为结点3。同理,以此类推,沿着根结点不断比赛,直至结束。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值