判断给定的图是否是有向无环图

判断给定的图是否是有向无环图,方法是应用拓扑排序,代码如下:

#include<iostream>
#include<list>
#include<stack>
using namespace std;

class Graph {
	int vertexNum;
	list<int> *adjacents;
public:
	Graph(int _vertexNum) {
		vertexNum = _vertexNum;
		adjacents = new list<int>[vertexNum];
	}
	void findIndegree(int *indegree, int n);
	bool topologicalSort();
	void addEdge(int v, int w);
};

void Graph::addEdge(int v, int w) {
	adjacents[v].push_back(w);
}

void Graph::findIndegree(int *indegree, int n) {
	int v;
	list<int>::iterator iter;
	for(v = 0; v < vertexNum; v++) {
		for (iter = adjacents[v].begin(); iter != adjacents[v].end(); iter++)
			indegree[*iter]++;
	}
}

bool Graph::topologicalSort() {
	int ver_count = 0;
	stack<int> m_stack;
	int *indegree = new int[vertexNum];
	memset(indegree, 0, sizeof(int) * vertexNum);
	findIndegree(indegree, vertexNum);
	int v;
	for (v = 0; v < vertexNum; v++)
		if (0 == indegree[v])
			m_stack.push(v);
	while (!m_stack.empty()) {
		v = m_stack.top();
		m_stack.pop();
		cout << v << " ";
		ver_count++;
		for (list<int>::iterator iter = adjacents[v].begin(); iter != adjacents[v].end(); iter++) {
			if (0 == --indegree[*iter])
				m_stack.push(*iter);
		}
	}
	cout << endl;
	if (ver_count < vertexNum)
		return false;
	return true;
}

int main(int argc, char *argv[]) {
	Graph g(6);
	g.addEdge(5, 2);
    g.addEdge(5, 0);
    g.addEdge(4, 0);
    g.addEdge(4, 1);
    g.addEdge(2, 3);
    g.addEdge(3, 1);
	if (g.topologicalSort())
		cout << "it is a topological graph" << endl;
	else
		cout << "it is not a topological graph" << endl;
	cin.get();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值