- 博客(7)
- 收藏
- 关注
原创 YOLO网络、语义分割与循环神经网络
YOLO通过将目标检测转化为回归问题,实现了速度与精度的平衡。其核心在于多尺度特征融合锚框机制和高效的骨干网络设计。后续版本的改进主要集中在提升小目标检测能力、优化损失函数和训练策略。选择不同版本的YOLO时需权衡速度、精度和应用场景需求。FCN是语义分割领域的奠基性工作,其核心在于全卷积化和跳跃连接,通过编码器-解码器结构实现端到端像素级预测。后续改进模型在感受野扩展、多尺度融合等方面持续优化。实际应用中需权衡模型精度、计算效率与场景需求,选择合适的分割网络(如轻量级模型部署在移动端)。
2025-05-24 16:27:59
928
原创 深度学习视觉应用:数据集、评价指标与核心算法
简介:10类(CIFAR-10)或100类(CIFAR-100)彩色图像,32x32分辨率。简介:手写数字数据集(0-9),6万训练+1万测试,28x28灰度图。规模:1400万+图像,2万+类别(ILSVRC竞赛使用1000类)。mAP(mean AP):多类别AP的平均值(COCO竞赛核心指标)优势:80类物体,30万+图像,支持检测、分割、关键点检测。简介:替代MNIST的10类服饰数据集,相同的数据格式。特点:20类物体检测与分割任务,包含边界框和像素级标注。应用:验证复杂模型的细粒度分类能力。
2025-05-18 13:49:26
450
原创 卷积神经网络(Convolutional Neural Network, CNN)
卷积神经网络(CNN)是一种专为处理网格数据(如图像、视频、语音)设计的深度学习模型。浅层网络提取低级特征(边缘、颜色),深层网络提取高级特征(物体部件、整体结构)。常用函数:ReLU(修正线性单元)、Sigmoid、Leaky ReLU。结构:22 层,包含多尺度并行卷积(1×1、3×3、5×5 卷积核)。权值共享:同一特征(如边缘、纹理)在不同位置的检测使用相同参数。分类任务:Softmax(多分类)、Sigmoid(二分类)。卷积核(Filter):权值矩阵(如 3×3、5×5)。
2025-05-11 17:05:49
621
原创 神经网络基础:线性回归与感知机原理详解及实践
本文完整代码已上传GitHub仓库,包含数据集预处理和训练可视化代码。建议读者在Jupyter Notebook中逐步运行代码,观察模型训练过程中的损失变化和准确率提升。通过实践可以更深入理解梯度下降、反向传播等核心机制。2. PyTorch官方文档: https://pytorch.org/docs。1. 《深度学习》(花书) - Ian Goodfellow 等。引入隐藏层和非线性激活函数(如ReLU)1.3 PyTorch实现示例。4. 李沐《动手学深度学习》2.2 图像分类示例。
2025-05-01 19:53:39
298
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅
2