任务总结
岁辞秋
夏花绚烂,为此而生。
展开
-
【总结】keras下,利用VGG16和resnet50预训练模型,完成多类别动物图片分类任务(上)
多类别动物图片分类任务(上)在学习了大约2周的机器学习和深度学习的基础知识,并跑了十多个模型之后,老师给我布置了一项真正的任务,利用已经收集到的图片信息,构建并训练模型,一期目标使得精度达到84%,二期目标使得精度达到90%。一开始并没有认识到,真正的实际数据会和demo中最后的结果差距如此之大,使得自己消沉了一段时间,不过经过将近15天的努力,总算是完成了任务,亦有所收获。故,在此把我这段...原创 2019-07-29 17:46:37 · 4144 阅读 · 2 评论 -
【总结】keras下,利用VGG16和resnet50预训练模型,完成多类别动物图片分类任务(中)
多类别动物图片分类任务(中)在前半部分,我们已经完成了前两大步,并决定使用ResNet50预训练网络来训练模型。那么接下来,就让我们引入keras中已经封装好的ResNet50预训练网络参数。ResNet50的引入代码实现base_model = ResNet50(weights='imagenet', include_top=False,...原创 2019-07-29 18:48:03 · 4997 阅读 · 0 评论 -
【总结】keras下,利用VGG16和resnet50预训练模型,完成多类别动物图片分类任务(下)
多类别动物图片分类任务(下)在最后,我们将在之前完成模型的基础上,利用模型微调,来进一步提高val_acc。查看ResNet50的模型结构想要进行模型微调,前提自然是知道我们可以调整那些层,关于这一点,我们可以利用summary函数来实现。代码实现model.summary()模型层次Layer (type) Output Shape ...原创 2019-07-29 19:10:36 · 2952 阅读 · 5 评论