学习笔记
岁辞秋
夏花绚烂,为此而生。
展开
-
【学习日记】《深入浅出:图神经网络》:第四天---表示学习
表示学习表示,通俗的理解就是特征。表示学习是指可以自动的从数据中去学习“有用”的特征,并可以直接用于后续的具体任务的方法。 1. 表示学习 1.1 表示学习的意义机器学习算法的性能严重依赖于特征,因此在传统机器学习中,大部分的工作都在于数据的处理和转换上,以期得到好的特征使得机器学习算法更有效。这样的特征工程是十分费力的,因为这种方法没有能力从数据中去获得有用的知识,而特征工程的目的则...原创 2020-01-13 15:55:45 · 3084 阅读 · 6 评论 -
【学习日记】《深入浅出:图神经网络》:第三天---卷积神经网络
卷积神经网络 1. 卷积与池化 1.1 图像中的卷积我们以图像为例来直观的理解卷积。计算机中的图像通常都是按照像素点以离散的形式存储的,可以用一个二维或三维的矩阵来表示。假设对于一个二维的图像X∈R^ (HxW),卷积核为G∈R ^ (kxk),通常K为奇数。则有,先将卷积核旋转180度,然后在输入中的对应位置取一个大小为k*k的区域,与旋转后的卷积核求内积,得到对应位置的输出。 1....原创 2020-01-13 10:10:52 · 1576 阅读 · 0 评论 -
【学习日记】《深入浅出:图神经网络》:第二天---神经网络基础
神经网络基础 1. 机器学习基本概念 1.1 机器学习分类根据训练数据是否带有标签,可以分为:监督学习指的是训练数据中每个样本都有标签,通过标签可以指导模型进行学习,学到具有判别性的特征,从而对未知样本进行预测。无监督学习指的是训练数据完全没有标签,通过算法从数据中发现一些数据之间的约束关系,比如数据之间的关联、距离关系等。半监督学习指的是介于监督学习与无监督学习之间...原创 2020-01-10 10:33:01 · 3248 阅读 · 2 评论 -
【学习日记】《深入浅出:图神经网络》:第一天---图的概述
图的概述 1. 图的基本定义图由顶点(Vertex)以及连接顶点的边(Edge)构成。其中,顶点表示研究的对象,边表示两个对象之间特定的关系。图可以表示为顶点和边的集合,记为G=(V,E)同时,我们设图G的顶点数为N,边数为M。 1.1 图的基本类型可以分为:有向图和无向图加权图和非加权图连通图和非连通图二部图其中,二部图指的是:我们将G中的顶点集合V拆分成两个子集A和B,...原创 2020-01-09 16:35:14 · 2780 阅读 · 1 评论