- 逆波兰表达式求值 根据 逆波兰表示法,求表达式的值。
有效的算符包括 +、-、*、/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
整数除法只保留整数部分。 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
输入:tokens = [“2”,“1”,"+",“3”,"*"] 输出:9 解释:该算式转化为常见的中缀算术表达式为:((2 + 1) *
3) = 9 示例 2:输入:tokens = [“4”,“13”,“5”,"/","+"] 输出:6 解释:该算式转化为常见的中缀算术表达式为:(4 + (13
/ 5)) = 6 示例 3:输入:tokens = [“10”,“6”,“9”,“3”,"+","-11","","/","",“17”,"+",“5”,"+"]
输出:22 解释: 该算式转化为常见的中缀算术表达式为: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22提示:
1 <= tokens.length <= 104 tokens[i] 要么是一个算符("+"、"-"、"*" 或
“/”),要么是一个在范围 [-200, 200] 内的整数逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。 该算式的逆波兰表达式写法为 ( ( 1 2 + ) (
3 4 + ) * ) 。 逆波兰表达式主要有以下两个优点:去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。 通过次数100,221提交次数187,152
int evalRPN(char ** tokens, int tokensSize){
//用数字栈。数组模拟栈
int lenth = tokensSize;
int count=0;
int stack[lenth];
memset(stack, 0, sizeof(stack));
for(int i =0;i<lenth;i++)
{
if(tokens[i][0]<='9'&&tokens[i][0]>='0'||tokens[i][1]!='\0')
{
// printf("%c",tokens[i][0]);
if(tokens[i][0]=='-')
{
stack[count]=-num(tokens[i]);
printf("%d",stack[count]);
}
else{
stack[count]=num(tokens[i]);
}
count++;
printf("%d",count);
}
if(tokens[i][0]=='+')
{
printf(" +%d ",count);
stack[count-2]=stack[count-1]+stack[count-2];
count--;
printf("%d",count);
}
if(tokens[i][0]=='-'&&tokens[i][1]=='\0')
{
stack[count-2]=stack[count-2]-stack[count-1];
count--;
}
if(tokens[i][0]=='*')
{
printf("%d",count);
stack[count-2]=stack[count-1]*stack[count-2];
count--;
}
if(tokens[i][0]=='/')
{
printf("count=%d",count);
stack[count-2]=stack[count-2]/stack[count-1];
count--;
}
}
return stack[0];
}
int num(char * a)
{
int coun = 0;
if(a[0]=='-')
coun=1;
int res = 0;
while(a[coun]!='\0')
{
res=res*10+(a[coun]-'0');
coun++;
}
// printf("res=%d",res);
return res;
}