150. 逆波兰表达式求值 根据 逆波兰表示法,求表达式的值。

  1. 逆波兰表达式求值 根据 逆波兰表示法,求表达式的值。

有效的算符包括 +、-、*、/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。

说明:

整数除法只保留整数部分。 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。

示例 1:

输入:tokens = [“2”,“1”,"+",“3”,"*"] 输出:9 解释:该算式转化为常见的中缀算术表达式为:((2 + 1) *
3) = 9 示例 2:

输入:tokens = [“4”,“13”,“5”,"/","+"] 输出:6 解释:该算式转化为常见的中缀算术表达式为:(4 + (13
/ 5)) = 6 示例 3:

输入:tokens = [“10”,“6”,“9”,“3”,"+","-11","","/","",“17”,"+",“5”,"+"]
输出:22 解释: 该算式转化为常见的中缀算术表达式为: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

提示:

1 <= tokens.length <= 104 tokens[i] 要么是一个算符("+"、"-"、"*" 或
“/”),要么是一个在范围 [-200, 200] 内的整数

逆波兰表达式:

逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。

平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。 该算式的逆波兰表达式写法为 ( ( 1 2 + ) (
3 4 + ) * ) 。 逆波兰表达式主要有以下两个优点:

去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。 通过次数100,221提交次数187,152

int evalRPN(char ** tokens, int tokensSize){
 //用数字栈。数组模拟栈
 int lenth = tokensSize;
 int count=0;
 int stack[lenth];
 memset(stack, 0, sizeof(stack));
 for(int i =0;i<lenth;i++)
 {

     if(tokens[i][0]<='9'&&tokens[i][0]>='0'||tokens[i][1]!='\0')
     {       
        // printf("%c",tokens[i][0]);
        if(tokens[i][0]=='-')
         {
          stack[count]=-num(tokens[i]);
          printf("%d",stack[count]);
         }
          
         else{
             stack[count]=num(tokens[i]);
         }
         
         count++;
         printf("%d",count);
     }
     if(tokens[i][0]=='+')
     {
          printf(" +%d ",count); 
         stack[count-2]=stack[count-1]+stack[count-2];

         
         count--;
        printf("%d",count);
     }
     if(tokens[i][0]=='-'&&tokens[i][1]=='\0')
     {
         stack[count-2]=stack[count-2]-stack[count-1];
         count--;
     }
     if(tokens[i][0]=='*')
     {
         printf("%d",count);
         stack[count-2]=stack[count-1]*stack[count-2];
         count--;
         
         
     }
     if(tokens[i][0]=='/')
     {
         printf("count=%d",count);
          stack[count-2]=stack[count-2]/stack[count-1];
         count--;
     }

 }
 return stack[0];
}

int num(char * a)
{
    int coun = 0;
    if(a[0]=='-')
        coun=1;
    int res = 0;
    while(a[coun]!='\0')
    {
       res=res*10+(a[coun]-'0');
       coun++;
    }
   // printf("res=%d",res);
    return res;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值