人工智能学习笔记

机器学习基础

机器学习算法可分为有监督学习和无监督学习,有监督学习是既利用了特征值又利用了标签值的算法,无监督学习是没有标签值的算法

训练集,测试集,验证集(训练集用于训练,测试集和验证集用来测试模型的效果,示例样本分配:6:1:3),可以采用交叉验证的方法改变 训练集和测试集

归一化与标准化,将有量纲的数值转化为纯量。

KNN

KNN代表K最近邻算法(K-Nearest Neighbors),是一种用于分类和回归的简单机器学习算法。在KNN中,要预测一个新数据点的类别或值,算法会查找训练数据集中与该数据点最接近的K个数据点,然后根据这K个数据点的类别(对于分类问题)或值(对于回归问题)来决定新数据点的类别或值。KNN是一种基于实例的学习方法,没有显式地学习模型,而是根据邻近的数据点来做预测。

可以通过设置权重来减小错误发生的概率。

线性回归

优化任务是求使损失函数最小时参数的值(最小二乘法,梯度下降法)

最小二乘法

函数或模型到观测数据,例如线性回归模型就是通过最小二乘法来估计回归系数的。通过最小化误差平方和,可以得到对观测数据最拟合的模型参数。是一种常用的数学优化方法,用于寻找一组参数,使得某个函数与一组观测数据之间的误差平方和最小化。在统计学和机器学习中,最小二乘法经常用于拟合

梯度下降法

一种常用的优化算法,用于最小化一个函数的数值解。在机器学习和深度学习中,梯度下降法被广泛应用于训练模型,特别是神经网络。

梯度下降法的基本思想是通过迭代更新参数,使得函数的值沿着梯度的反方向逐渐减小,直到达到局部最优解。在每一步迭代中,计算函数的梯度(即导数),然后沿着梯度的反方向调整参数的取值,以降低函数值。

梯度下降法有多种变体,包括批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)和小批量梯度下降(Mini-batch Gradient Descent)。这些变体在处理大规模数据集和加速收敛速度方面有不同的优势和应用场景。

权重:

激活值:

神经网络学习基础

基本概念

输入信号,权重,输出,总和,膜电位,阈值,损失函数

输入信号×其权重的总和如果大于阈值,则下一神经元被激活,反之则被抑制。(sgn函数)

优化就是通过调整分类器的各个参数,使得损失函数最小化的过程。

激活函数:

激活函数在神经网络中扮演着至关重要的角色。它的作用是为神经元引入非线性特性,使神经网络能够学习和逼近各种复杂的函数关系。在神经网络的每一层中,激活函数将输入信号转换为输出信号,经过激活函数处理后的输出将作为下一层神经元的输入。

如果没有激活函数,神经网络就只是一系列线性变换的组合,多层线性变换仍然只是线性变换,无法学习复杂的非线性模式。通过引入非线性激活函数,神经网络可以学习到非线性关系,从而提高网络的表达能力,更好地拟合数据。

加入激活函数后,神经网络就有可能学习到平滑的曲线来分割平面,而不是用复杂的线性组合逼近平滑曲线来分割平面,使神经网络的表示能力更强了,能够更好的拟合目标函数。 这就是为什么我们要有非线性的激活函数的原因

sigmoid函数是一种常用的激活函数,通常用于二元分类问题。它的数学表达式为:

1/(1+e的-x次方)

其中,z是输入值。sigmoid函数可以将任意实数值映射到一个范围在0到1之间的数值,因此经常被用来表示概率。

在逻辑回归中,sigmoid函数将线性回归模型的输出值转换为0到1之间的概率值,表示样本属于正类的概率。通常,当sigmoid函数的输出大于0.5时,将样本预测为正类(1),否则预测为负类(0)。

sigmoid函数的曲线形状是S型的,具有平滑的导数,在梯度下降等优化算法中容易求导且收敛较快。然而,sigmoid函数在输入值很大或很小时可能出现梯度饱和问题,导致梯度消失,这在深度神经网络中可能会影响模型的训练效果。因此,在深度学习中,有时候会使用其他激活函数如ReLU来代替sigmoid函数。

ReLU(Rectified Linear Unit)是一种常用的激活函数,通常用于深度学习中的神经网络。ReLU函数定义为:

[ f(x) = max(0, x)] 

简单来说,对于任何输入值x,ReLU函数返回的值是0和x中的较大值。这种非线性函数的特点使得神经网络能够更好地学习非线性关系,同时减轻了梯度消失问题。

ReLU函数在深度学习中被广泛使用,因为它的计算简单且能有效缓解梯度消失问题。然而,ReLU函数也存在一些问题,比如可能导致神经元死亡(输出为0),以及可能出现梯度爆炸的情况。为了解决这些问题,一些改进的激活函数,如Leaky ReLU和ELU等,也被提出并应用于神经网络中。

tanh函数的取值范围在[-1, 1]之间,类似于sigmoid函数,但是tanh函数的输出范围更广。在神经网络中,tanh函数常用于隐藏层神经元的激活函数,帮助网络学习非线性关系。与sigmoid函数相比,tanh函数在输入为0时的导数更大,因此tanh函数在训练时更容易收敛。

PReLu,leaky ReLu函数避免了神经元死掉的问题

MLP

MLP指的是“Multi-Layer Perceptron(多层感知器)”,是一种最基本的神经网络模型。多层感知器由多个神经元组成的多层结构,通常包括输入层、隐藏层和输出层。每个神经元都与上一层和下一层的神经元相连接,通过权重进行连接权重传递和激活函数进行非线性映射,从而实现对输入数据的学习和模式识别。

多层感知器是一种前向反馈神经网络,通过输入数据经过多层神经元的计算和激活函数的处理,最终得到输出结果。隐藏层的存在使得多层感知器能够学习更加复杂的非线性关系,从而提高模型的表达能力和泛化能力。

多层感知器是深度学习的基础,通过多层神经元的组合和调整,可以学习到复杂的特征和模式,适用于各种机器学习任务,如分类、回归(预测房价走向)、聚类、排序、数据降维等。

BP

BP通常指的是“Back Propagation(反向传播)”算法,是深度学习领域中常用的一种训练神经网络的方法。在神经网络中,反向传播算法通过计算神经网络输出与真实标签之间的误差,然后反向传播这个误差,调整神经网络中的权重参数,以减小误差,从而提高模型的准确性。

简单来说,反向传播算法是通过不断地调整神经网络中的参数,使得神经网络的预测结果逐渐接近真实标签,从而实现模型的训练和优化。这个过程是反向传播误差信号,根据误差信号对网络参数进行调整,以最小化预测误差。

卷积神经网络

卷积神经网络(Convolutional Neural Network,CNN)是一种专门用于处理具有类似网格结构的数据的深度学习模型。CNN在计算机视觉领域中表现出色,被广泛应用于图像识别、目标检测、人脸识别等任务。

CNN的核心思想是使用输入层,卷积层、激活层,池化层和全连接层来提取和学习数据的特征。卷积层通过卷积操作提取输入数据的特征,池化层用于下采样和减小特征图的尺寸,全连接层用于将提取的特征映射到输出层进行分类或回归。

CNN之所以在图像处理任务中表现优异,是因为它具有以下特点:

1. 参数共享:卷积层中的卷积核在整个输入数据上共享参数,减少了模型的参数数量,提高了模型的泛化能力。

2. 局部感知:卷积操作能够捕捉输入数据的局部特征,通过不同卷积核的组合,实现对整体特征的学习。

3. 空间层级结构:通过多层卷积和池化操作,CNN能够逐渐学习到数据的抽象和层次化特征。

总的来说,卷积神经网络是一种适用于处理具有空间结构特征的数据的深度学习模型,在图像处理领域中取得了很大成功。

Q--learning算法

Q-learning是一种强化学习算法,用于训练智能体在与环境互动的过程中学习如何做出最佳决策以获得最大的累积奖励。在Q-learning中,智能体通过不断地尝试不同的行动来探索环境,并根据获得的奖励来更新其Q值函数。Q值函数衡量了采取某个动作后所能获得的预期总奖励。通过不断地更新Q值函数,智能体可以逐步学习到在每个状态下选择最优的动作,从而实现最优的决策策略。Q-learning是一种基于价值迭代的强化学习算法,被广泛应用于各种领域,如游戏、机器人学和自动驾驶等。

plus:

本文只是我在学习过程中所做的一些记录,因为是大一新生的缘故很多并不甚了解,此后若深入学习会继续更新

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值