将一堆正整数分为2组,要求2组的和相差最小。
例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的。
Input
第1行:一个数N,N为正整数的数量。 第2 - N+1行,N个正整数。 (N <= 100, 所有正整数的和 <= 10000)
OutPut
输出这个最小差
Input示例
5 1 2 3 4 5
Output示例
1
题目实为0-1背包问题的变种。假设初始划分策略为:数组A分得全部数据,数组B为空。那么数组B每次从数组A拿到一个数据A[I]后,两个数组的和相差2A[i],那么问题就转化为:一堆宝石,每个宝石重量为2A[i],现在有一个能装重量为sum(数组A的和)的背包,问,最多能装多重的宝石?分析到此,状态转移方程就出来了:f[i][j] = max{f[i+1][j],f[i+1][j-2*A[i]]+2*A[i] | i<=n-1,j<=sum};
代码如下:
#include <vector>
#include <iostream>
using namespace std;
int main()
{
int n;
cin>>n;
if(n>0){
vector<int> data;
int value;
int sum =0;
while(n--){
cin>>value;
data.push_back(value);
sum += value;
}
n = data.size();
vector<vector<int>> dp(n+1,vector<int>(sum+1,0));
for(int i=n-1;i>=0;i--){
for(int j=0;j<=sum;++j){
dp[i][j] = (i==n-1 ? 0:dp[i+1][j]);
if(j >= 2*data[i])
dp[i][j] = dp[i][j] > dp[i+1][j-2*data[i]]+2*data[i] ? dp[i][j] :dp[i+1][j-2*data[i]]+2*data[i];
}
}
cout<<(sum-dp[0][sum])<<endl;
}
return 0;
}