题目描述
给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],…,k[m]。请问k[0]xk[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
思路: 动态规划
定义函数f(n)为把长度为n的绳子剪成若干段后各段长度乘积的最大值。
首先,当绳子长度小于等于3时,可以发现其剪后的乘积都比原来的长度小。故可以把小于等于3的长度看做特殊情况先列出来。f(1) = 0、f(2) = 1、f(3) = 2。
因此,当绳子长度大于3时,当绳子长度剪到部分小于等于3时则不应该再剪。
确定子问题:例如绳子的长度为8,那么可以剪成1,7两段,那么此时又要求解长度为7的绳子怎么剪最好。依次类推。
确定转移方程,可得 f(i) = max(f(j) × f(i − j)), 0 < j < i
注意边界条件:虽然有f(0)=f(1)=0;f(2)=1;f(3)=2; 但是在表中存下来却不是这个值,而应该是:f(1) = 1、f(2) = 2、f(3) = 3。即在起始条件的时候小问题的最优解并不是我们求解大问题时使用的那个值。
C++
class Solution {
public:
int cutRope(int number) {
if (number <= 1) return 0;
if (number == 2) return 1;
if (number == 3) return 2;
//以下为此长度不再剪绳子时的值,因为当绳子长度小于等于3时,乘积比原长度少,
//故剪剩1,或2或3时则不应该再剪
//以下为:backup[1] = 1、backup[2] = 2、backup[3] = 3,即表示剪剩1,或2或3时则不应该再剪,为原来长度
vector<int>backup{0, 1, 2, 3}; //0为占位,无用
for (int i = 4; i <= number; i++)
{
int max = 0;
//因为对称的关系,所以只用计算上半段即可
for (int j = 1; j <= i / 2; j++)
{
int temp = backup[j] * backup[i - j];
if (max < temp) max = temp;
}
backup.push_back(max);
}
return backup[number];
}
};
Python
# -*- coding:utf-8 -*-
class Solution:
def cutRope(self, number):
# write code here
if number <= 1:
return 0
if number == 2:
return 1
if number == 3:
return 2
backup = [0, 1, 2, 3]
for i in range(4, number + 1):
Max = 0
for j in range(1, i / 2 + 1):
temp = backup[j] * backup[i - j]
if Max < temp:
Max = temp
backup.append(Max)
return backup[number]