【FLUX教程】Flux官方重绘+扩图+风格参考+ControlNet,要一统江湖?(附工作流)

原本就很强的Flux,日前公布了一批官方工具,涵盖常用的绘图功能,使其媲美(甚至超过)闭源工具。

首先你需要已在ComfyUI中安装最新版本的Flux,

下面逐项列出在ComfyUI中使用的方法和模型/工作流的下载路径。


一、Flux重绘(Fill Inpainting)

需要下载flux1-fill-dev.safetensors这个模型:

将下载的模型放在ComfyUI/models/diffusion_models/文件夹下。

下载Flux重绘工作流:

解压后,将扩展名为json的文件拖到ComfyUI界面,就得到下面的工作流:

用这张图进行测试:

在ComfyUI的Load Image窗口中,右键点击图像,选择“Open in MaskEditor”,然后在要修改的部分涂抹:

完成后点击“Save to node”保存:

之后填写关键词,把人物换成金发碧眼的泳装女郎,开始生成:

再比如把这个女生拿的大刀,重绘成大锤:

或是在天空添加一艘飞船:


**
二、Flux扩图(Fill Outpainting)**

用到的模型和上面一样,也是flux1-fill-dev.safetensors。工作流从这里下载:
https://education.civitai.com/wp-content/uploads/2024/08/Flux-Fill-Basic-Workflow-Outpaint.zip

操作和重绘差不多,唯一需要注意的是“Pad Image for Outpainting”窗口,这里控制扩图范围,比如下图是左边扩展400像素,右边扩展400像素:

官方扩图工具的效果相当好,下面看几个测试结果:

将背景的沙滩延伸

扩展后汽车内部装饰基本符合逻辑

二次元扩图表现也不错

真人电影剧照,加入提示词“后方摆放摩托车”

提示词中加入“床上坐着穿西装的男人”,难辨真伪


**
三、Flux风格参考(Redux)**

下载sigclip_vision_patch14_384.safetensors模型:

将该模型放在ComfyUI/models/clip_vision/文件夹。

下载flux1-redux-dev.safetensors模型:

![](https://i-blog.csdnimg.cn/img_convert/3c6b9b41695189bc7323a9b6b84e92c7.jpeg)

将该模型放在ComfyUI/models/style_models/文件夹。

下载Flux风格参考工作流:
https://education.civitai.com/wp-content/uploads/2024/08/Flux-Redux-Basic-Workflow.zip

风格参考主要作用是在当前图像基础上,生成相似的变体,比如下面的例子:

另外,风格参考还可以同时引入多幅图像。

多图工作流下载页面:

多图可以产生一些有趣的效果,比如让女孩背上大刀:

让两个角色的特征产生融合:

真人变成二次元,放在动漫背景里:


**
四、Flux ControlNet**

ControlNet是AI绘画不可缺少的模型,这次Flux推出了自有版本,包括Canny(边缘检测)和Depth(深度控制)。

Canny下载地址:
https://huggingface.co/black-forest-labs/FLUX.1-Canny-dev/tree/main

Canny LoRA下载地址:
https://huggingface.co/black-forest-labs/FLUX.1-Canny-dev-lora/tree/main

Depth下载地址:
https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev/tree/main

Depth LoRA下载地址:
https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev-lora/tree/main

注意,LoRA版本是从完整版中提取,容量更小,效率更高,效果需要自行对比体会。

Canny工作流:
https://education.civitai.com/wp-content/uploads/2024/08/Flux-Canny-Basic-Workflow.zip

Depth工作流:
https://education.civitai.com/wp-content/uploads/2024/08/Flux-Depth-Basic-Workflow.zip

简单看一下效果,Canny可以较好的保留原图的整体结构,并做出修改:

Depth则更适合用来控制图像中的景深效果:


总的来看,Flux这批官方工具包的效果出色,如果你是AIGC爱好者,必不可错过!

文章涉及的网址:

Flux工具官方网站:
https://blackforestlabs.ai/#get-flux

ComfyUI代码页面:


关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
### Flux ControlNet 组件概述 Flux ControlNet组件是一种增强型模块,专为改进基于Flux框架的生成模型而设计。该组件能够显著提升像生成的质量和可控性[^2]。 #### 功能特性 - **条件控制**:ControlNet允许用户输入额外的指导信号(如边缘检测、语义分割等),这些信号作为加条件融入到生成过程中,从而实现更精确的结果。 - **灵活性高**:支持多种类型的辅助信息源,不仅限于单一模态的数据形式;可以轻松集成至现有的Flux工作流中,无需大幅修改原有架构。 - **性能优化**:采用先进的算法和技术手段,在保持高效的同时确保输出的一致性和稳定性。 ```python from flux_controlnet import ControlNet # 初始化ControlNet实例 control_net = ControlNet() # 加载预训练权 control_net.load_weights('path_to_pretrained_weights') # 设置条件输入 condition_input = process_additional_data() # 处理得到的条件数据 output_image = control_net.generate(image, condition_input) # 展示生成片 display(output_image) ``` #### 使用指南 为了充分利用Flux ControlNet的功能,建议按照如下方式操作: 安装必要的依赖库之后,导入`flux_controlnet`包,并创建一个`ControlNet`类的对象。接着加载已经准备好的预训练参数文件来初始化网络权值。对于具体的任务场景,准备好相应的条件输入数据,调用`generate()`函数执行像合成过程即可获得最终产物。 更多详细的配置选项以及高级特性的说明,请参阅官方文档或访问项目主页获取最新资讯。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值