- 博客(74)
- 资源 (1)
- 收藏
- 关注
原创 AIGC代码学习记录
第六步:把c_cat (n,5,64,64)和latent feature (n,4,64,64) 连接起来得到网络的输入 (n,9,64,64);第六步:根据之前文章的公式对latent feature (n,4,64,64)去燥,得到新的latent feature (n,4,64,64);第六步:根据之前文章的公式对latent feature (n,4,64,64)去燥,得到新的latent feature (n,4,64,64);mask img用编码器得到(n,4,64,64);
2024-07-19 22:06:45 971
原创 stable diffusion代码学习笔记
其实就是log(1-alpha(右下角t)(头上直线)),没有带prev的都是当前时刻t,带prev的是前一时刻t-1。得到了上一刻的噪声图片x_prev后(也就是函数返回的img),继续迭代,最终生成需要的图片。另外,还有一些参数是训练时候保存的,betas逐渐增大,用来控制噪声的强度。这部分代码应该就是PLMS加速采样用的,论文中有公式推理。
2024-01-11 19:01:44 1771
原创 MMdetection验证时报错data[‘category_id‘] = self.cat_ids[label] IndexError: list index out of range
问题描述,当我用mmdetect或者mmyolo训练自己的数据时,训练的时候不会报错,测试的时候就会报错。解决方法如下:不太完美的解决方法:https://blog.csdn.net/qq_36810398/article/details/116994577完美的解决方法如下:我的配置文件继承了另外一个配置文件。不管有没有继承其他配置文件,代码默认使用的事coco的pipeline。我们需要加入下图中的变量:最后把这个变量metainfo传进dataloader中就可以解决问题:
2023-12-22 14:10:38 1240
原创 onnx检测推理
在导出onnx的时候可以把后处理的那部分注释掉,下图是我的处理方式,只在导出onnx时,myexport=1.。导出完毕后,onnx的结构如图。这样在后续转模型的时候就不会出现do not support dimension size > 4 了。得到onnx后,手写后处理,附赠onnx推理代码:import cv2import os# 指定 ONNX 模型文件路径idx += 3# 创建 ONNX 运行时的 Session# 构造输入数据# 进行推理。
2023-12-06 17:46:47 652
原创 安卓ncnn部署分割模型
最后,不需要看代码中的readme,下载我代码中对应版本的ncnn即可。核心代码,得到网络的输出mask,绘制到原图上。,先看效果图,这是一个分割指甲的任务。
2023-12-05 10:09:04 514 1
原创 C++什么时候使用指针(函数传参时)
需要注意的是,使用指针传递参数可能会增加代码的复杂性和风险,因为需要确保传递的指针有效且不为空。此外,在某些情况下,编译器可能会对传值和传指针进行优化,使它们的性能差异变得微不足道。因此,在选择传递方式时,应根据具体情况进行权衡和测试。
2023-11-14 13:38:25 315
原创 F1-score解析
计算多类别的 F1-score,使用 Scikit-learn 库中的 f1_score 函数。以下是一个示例代码,演示如何计算多类别的 F1-score。
2023-08-15 18:47:11 327
原创 TTA测试时间增强
"TTA"代表测试时间增强(Test Time Augmentation)。测试时间增强是一种在模型推理阶段增强性能的技术,它通过对输入图像应用多种不同的增强方法(如翻转、缩放、旋转等),然后对模型的多个预测结果进行平均或投票来提高检测准确度。在YOLOv5中,使用TTA可以进一步提升模型的性能,尤其是在处理一些难以检测的情况下。通过对同一张图像的多个增强版本进行预测,然后综合这些预测结果,可以提高模型的鲁棒性和准确性。
2023-08-15 17:00:15 717
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人