题目链接:https://www.bnuoj.com/bnuoj/contest_show.php?cid=8507#problem/101989
题意:就是给你一n只狗,一开始每只狗的碗有0个狗粮,然后有3种操作.
g i,代表第i只狗碗加1个狗粮
s i j 代表第i只狗和第j只狗的碗交换
e i 代表第i只狗吃完这个对应碗的狗粮
然后给你 k个这种命令,并且对这些操作循环做m次,求最后每个碗剩下的狗粮.
个人感想:玄学A题法,就是跟学弟讨论暴力找循环节就可以过,我就感觉可能会超时,但是并没有超,
我们的想法是这样的,例如这一次的结果和上一次的结果 做差值,得到每个碗的增量,
每个碗的增量肯定达到一定程度上就会出现循环节,然后我们就先找到循环节的位置,
如果说循环的操作没达到循环节,那么直接操作就好了,
如果说操作达到了循环节,先把没达到循环节的增量做了,然后再做循环节,最后做循环节多余出来的次数,即可…
nnd,超级坑,这个循环节的头部出现是不知道在什么时候的,就想循环小数一样的,可能出现的在很后面.
分析:规律
代码:
/* Author:GavinjouElephant
* Title:
* Number:
* main meanning:
*
*
*
*/
#include <iostream>
using namespace std;
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <sstream>
#include <cctype>
#include <vector>
#include <set>
#include <cstdlib>
#include <map>
#include <queue>
//#include<initializer_list>
//#include <windows.h>
//#include <fstream>
//#include <conio.h>
#define MaxN 0x7fffffff
#define MinN -0x7fffffff
#define lson 2*k
#define rson 2*k+1
typedef long long ll;
const int INF=0x3f3f3f3f;
const int maxn=1e5+10;
int Scan()//读入整数外挂.
{
int res = 0, ch, flag = 0;
if((ch = getchar()) == '-') //判断正负
flag = 1;
else if(ch >= '0' && ch <= '9') //得到完整的数
res = ch - '0';
while((ch = getchar()) >= '0' && ch <= '9' )
res = res * 10 + ch - '0';
return flag ? -res : res;
}
void Out(int a) //输出外挂
{
if(a>9)
Out(a/10);
putchar(a%10+'0');
}
ll n,m,k;
char org[105][2];
int torg[105][2];
ll tmp[105];
ll temp[105];
ll top;
ll xunhuyanjie[10000][105];
ll O[105];
int main()
{
#ifndef ONLINE_JUDGE
freopen("coco.txt","r",stdin);
freopen("lala.txt","w",stdout);
#endif
while(scanf("%lld%lld%lld",&n,&m,&k),n+m+k)
{
memset(tmp,0,sizeof(tmp));
memset(temp,0,sizeof(temp));
memset(O,0,sizeof(O));
for(int i=0; i<k; i++)
{
scanf("%s",org[i]);
if(org[i][0]=='g')
{
scanf("%d",&torg[i][0]);
}
else if(org[i][0]=='s')
{
scanf("%d%d",&torg[i][0],&torg[i][1]);
}
else if(org[i][0]=='e')
{
scanf("%d",&torg[i][0]);
}
}
if(m==0)
{
for(int i=1; i<=n; i++)
{
if(i==1)printf("0");
else printf(" 0");
}
printf("\n");
continue;
}
top=0;
ll L=-1,R=-1;
while(1)
{
for(int i=1; i<=n; i++) tmp[i]=temp[i];
for(int i=0; i<k; i++)
{
if(org[i][0]=='g')
{
temp[torg[i][0]]+=1;
}
else if(org[i][0]=='s')
{
swap(temp[torg[i][0]],temp[torg[i][1]]);
}
else if(org[i][0]=='e')
{
temp[torg[i][0]]=0;
}
}
for(int i=1; i<=n; i++)
{
xunhuyanjie[top][i]=(temp[i]-tmp[i]);
}
top++;
if(top>1)
{
for(int s=0; s<top-1; s++)
{
bool flag=true;
for(int i=1; i<=n; i++)
{
if(xunhuyanjie[s][i] !=xunhuyanjie[top-1][i])
{
flag=false;
break;
}
}
if(flag)
{
L=s,R=top-1;
break;
}
}
if(L!=-1)break;
}
}
L++;
R++;
for(int t=1; t<=min(L,m); t++)
{
for(int i=0; i<k; i++)
{
if(org[i][0]=='g')
{
O[torg[i][0]]+=1;
}
else if(org[i][0]=='s')
{
swap(O[torg[i][0]],O[torg[i][1]]);
}
else if(org[i][0]=='e')
{
O[torg[i][0]]=0;
}
}
}
m-=L;
if(m>0)
{
memset(tmp,0,sizeof(tmp));
for(int i=L; i<R; i++)
{
for(int j=1;j<=n;j++) tmp[j]+=xunhuyanjie[i][j];
}
ll top=R-L;
ll now=(m/top);
for(int i=1; i<=n; i++)
{
O[i]+=tmp[i]*now;
}
for(int t=0; t<m%top; t++)
{
for(int i=0; i<k; i++)
{
if(org[i][0]=='g')
{
O[torg[i][0]]+=1;
}
else if(org[i][0]=='s')
{
swap(O[torg[i][0]],O[torg[i][1]]);
}
else if(org[i][0]=='e')
{
O[torg[i][0]]=0;
}
}
}
}
for(int i=1; i<=n; i++)
{
if(i==1)printf("%lld",O[i]);
else printf(" %lld",O[i]);
}
printf("\n");
}
return 0;
}