RLE 行程长度压缩算法的改进

本文探讨了行程长度(RLE)压缩算法的基本原理及其存在的问题,提出了两种改进方法。方法1通过特殊控制字节指示是否进行压缩,提高压缩效率;方法2调整计数方法,减少表示大批量重复信息所需的字节。改进后的算法对于行程长度大于63字节的数据,压缩效率提高了约60%,特别适用于包含大量重复字符的数据文件。
摘要由CSDN通过智能技术生成
 
计算机所能处理的各种信息都是数字信息。数字化了的各种信息数据量很大,如果直接使用,肯定会给计算机造成很大负担。例如,一张A4幅面的图片,若用中等分辨率的扫描仪按真彩扫描,其数据量大约为26MB,这是一个不小数目。这些大量的数据信息会对存储器的存储容量、通信干线信道的带宽以及计算机的处理速度产生极大的压力,因此必须对这些数据进行
压缩。本文仅就行程长度(RLE)无损压缩算法及其改进方法进行研究。
1 行程长度(RLE)压缩算法的基本原理[1]
对于图像文件中的各个像素数据,由于图像颜色的梯度变化,相邻像素的颜色值相同的可能性极大,RLE(Run Length Encoding)压缩算法的原理就是将一扫描行中颜色值相同的相邻像素,用一个计数值和那些像素的颜色值来代替。主要通过压缩除掉数据中的冗余字节或字节中的冗余位,从而达到减少文件所占空间的目的。例如,有一表示颜色像素值的字符串aaaaaabbccccddddddddeeeeeee,用RLE压缩方法压缩后,可用6a2b3c8d6e来代替,显然后者的串长度比前者的串长度小得多。但是,当图像像素的颜色值出现特殊情况时,如每个相邻像素的颜色值均不同,则经此方法压缩后,反而会使数据串的长度增加一倍,为了尽量避免前述特殊数据的出现,RLE方法在具体实施时对计数字节和图像像素字节进行了区分,对每个相邻像
素的颜色值均不同的单个像素数据,只有当高2位全1时才加1计数,否则直接输出该像素值,因此避免了压缩后长度增加一倍的情况。这样就使得计数字节本身的高2位也是全1,即计数字节为C0H+n(像素数据连续相同的字节数)。由于一个字节最大只能为FFH,因此n最大只能为FFH-C0H=3
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值