上一步:Sift:(第二步)关键点位置的确定_zzz_zzzz_的博客-CSDN博客
目的:为了使关键点描述符具有旋转不变性,需要利用图像的局部特征为每一个关键点分配一个基准方向。
第二步已经找到了关键点,并在此之前已经确定了各个关键点的属性值。下面要做的是,为关键点赋予方向。首先,找到关键点所在尺度相近的高斯金字塔图像。然后在关键点坐标位置附近的一定邻域内(如上图左),计算各像素点的梯度幅值和梯度方向。并以关键点位置为核心,做1.5*的高斯滤波(使得关键点位置的赋值占比重大,距离关键点越远的位置的梯度赋值占比越小),这样就得到了经高斯滤波之后的赋值。至于,这个领域有多大,根据高斯滤波的3
原则,领域的大小为3*1.5*
。(注意,这里的sigma为
*
)
将我们计算得到的梯度方向(0~360度),分为36个柱(bins),每柱10度的区间范围。关键点邻域内的每一个点都有一个值,也都有一个bin。然后就像投票一样,每个点的值加到其对应的bin中,得到上图右边的直方图(图中仅画了8个方向的直方图,实际上是36个)。
全都“投票”之后,选择对应最大值的方向为该关键点的主方向。如果另有方向的值大于主方向值的80%,那么选择该方向为该关键点的辅方向。
以上为该步骤的理论知识。
Lowe,D 的SIFT代码
对于每一个特征点,先把它从特征值序列features中弹出,计算得它的36个方向的梯度直方图(hist[36]) ,对该梯度直方图进行平滑。再使用“打擂台”算法得到hist[36]中的最大值,也就是主方向的值。然后,将hist[36]中大于等于【80%*主方向的值】视做主方向/辅方向,分别再压入features序列中。
对于features前面弹出,待增加方向后,再压入。
//第三步:为关键点赋予方向的大框架
/*
Computes a canonical orientation for each image feature in an array. Based
on Section 5 of Lowe's paper. This function adds features to the array when
there is more than one dominant orientation at a given feature location.
@param features an array of image features(关键点/特征点序列)
@param gauss_pyr Gaussian scale space pyramid(高斯金字塔)
*/
static void calc_feature_oris( CvSeq* features, IplImage*** gauss_pyr )
{
struct feature* feat;//关键点类型
struct detection_data* ddata;//存储关键点信息的类型
double* hist;
double omax;
int i, j, n = features->total;//n是关键点序列中关键点的总数
for( i = 0; i < n; i++ )//对于每一个关键点的循环操作
{
feat = malloc( sizeof( struct feature ) );//分配内存空间
cvSeqPopFront( features, feat );//将featutes序列头部元素弹出,放入feat
ddata = feat_detection_data( feat );
//得到梯度直方图
hist = ori_hist( gauss_pyr[ddata->octv][ddata->intvl],
ddata->r, ddata->c, SIFT_ORI_HIST_BINS,
cvRound( SIFT_ORI_RADIUS * ddata->scl_octv ),
SIFT_ORI_SIG_FCTR * ddata->scl_octv );//调用函数ori_hist
//平滑梯度直方图
for( j = 0; j < SIFT_ORI_SMOOTH_PASSES; j++ ) //SIFT_ORI_SMOOTH_PASSES为2
smooth_ori_hist( hist, SIFT_ORI_HIST_BINS );//调用函数smooth_ori_hist
//得到主方向
omax = dominant_ori( hist, SIFT_ORI_HIST_BINS );//调用函数dominant_ori,返回36个bin中的最大幅值
//添加主方向,辅方向
add_good_ori_features( features, hist, SIFT_ORI_HIST_BINS,
omax * SIFT_ORI_PEAK_RATIO, feat );//调用函数add_good_ori_features
free( ddata );
free( feat );
free( hist );
}
}
生成梯度直方图,实际上是hist[36],里面存的是36个大致方向的赋值(已平滑)之和
//生成梯度直方图
/*
Computes a gradient orientation histogram at a specified pixel.
@param img image( 关键点所在的对应高斯金字塔的图片)gauss_pyr[ddata->octv][ddata->intvl]
@param r pixel row(关键点的x坐标) ddata->r
@param c pixel col(关键点的y坐标) ddata->c
@param n number of histogram bins(分为36个方向,梯度直方图的36个柱子)SIFT_ORI_HIST_BINS
注意:ddata->scl_octv = sigma * pow( 2.0, intvl / intvls );
@param rad radius of region over which histogram is computed(邻域:3*1.5倍的对应尺度) cvRound( SIFT_ORI_RADIUS * ddata->scl_octv )
@param sigma std for Gaussian weighting of histogram entries(对梯度幅值进行高斯滤波的系数:1.5倍的对应尺度)SIFT_ORI_SIG_FCTR * ddata->scl_octv
@return Returns an n-element array containing an orientation histogram
representing orientations between 0 and 2 PI.
*/
static double* ori_hist( IplImage* img, int r, int c, int n, int rad,
double sigma )
{
double* hist;
double mag, ori, w, exp_denom, PI2 = CV_PI * 2.0;
int bin, i, j;
hist = calloc( n, sizeof( double ) );//为梯度直方图分配内存空间
exp_denom = 2.0 * sigma * sigma;//2*sigma^2
for( i = -rad; i <= rad; i++ )
for( j = -rad; j <= rad; j++ )//在关键点的领域半径内
if( calc_grad_mag_ori( img, r + i, c + j, &mag, &ori ) )//调用函数calc_grad_mag_ori,求梯度赋值和方向,求出返回1,用指针带回
{
w = exp( -( i*i + j*j ) / exp_denom );//生成领域内像素的高斯权重
bin = cvRound( n * ( ori + CV_PI ) / PI2 );//求当前梯度方向对应的bin
bin = ( bin < n )? bin : 0;
hist[bin] += w * mag;//相当于“投票”
}
return hist;
}
计算当前像素点的梯度幅值和方向
//求梯度方向和梯度赋值
/*
Calculates the gradient magnitude and orientation at a given pixel.
@param img image(关键点所在图片)
@param r pixel row(关键点的x坐标)
@param c pixel col(关键点的y坐标)
@param mag output as gradient magnitude at pixel (r,c) (梯度赋值)
@param ori output as gradient orientation at pixel (r,c)(梯度方向)
@return Returns 1 if the specified pixel is a valid one and sets mag and
ori accordingly; otherwise returns 0
*/
static int calc_grad_mag_ori( IplImage* img, int r, int c, double* mag,
double* ori )
{
double dx, dy;
if( r > 0 && r < img->height - 1 && c > 0 && c < img->width - 1 )
{
dx = pixval32f( img, r, c+1 ) - pixval32f( img, r, c-1 );
dy = pixval32f( img, r-1, c ) - pixval32f( img, r+1, c );
*mag = sqrt( dx*dx + dy*dy );//梯度赋值
*ori = atan2( dy, dx );//梯度方向,第一象限(0,PI/2) 第二象限(PI/2,PI) 第三象限(-PI,-PI/2) 第四象限(-PI/2,0)
return 1;
}
else
return 0;
}
平滑梯度直方图
//平滑梯度直方图
//平滑目的:防止某个方向因为噪声干扰等原因突变
/*
Gaussian smooths an orientation histogram.
@param hist an orientation histogram(梯度直方图)
@param n number of bins(36)
*/
static void smooth_ori_hist( double* hist, int n )
{
double prev, tmp, h0 = hist[0];
int i;
prev = hist[n-1];
for( i = 0; i < n; i++ )
{
tmp = hist[i];
hist[i] = 0.25 * prev + 0.5 * hist[i] + 0.25 * ( ( i+1 == n )? h0 : hist[i+1] );//25%的前一个,50%自身,25%后一个
// hist[0]=0.25*hist[35]+0.5*hist[0]+0.25*hist[1]
prev = tmp;
}
}
获取主方向的对应hist中的值
//主方向对应值的获取
//应用“打擂台”算法得最大值
/*
Finds the magnitude of the dominant orientation in a histogram
@param hist an orientation histogram(平滑后的梯度直方图)
@param n number of bins(36)
@return Returns the value of the largest bin in hist
*/
static double dominant_ori( double* hist, int n )
{
double omax;
int maxbin, i;
omax = hist[0];
maxbin = 0;
for( i = 1; i < n; i++ )
if( hist[i] > omax )
{
omax = hist[i];
maxbin = i;
}
return omax;
}
添加特征点的主方向/辅方向,并将其添加到features中
如果一个特征点有一个主方向,一个辅方向,那么会有两个new_feature被压入features序列
//添加主方向、辅方向
/*
Adds features to an array for every orientation in a histogram greater than
a specified threshold.
@param features new features are added to the end of this array(特征点序列)
@param hist orientation histogram(梯度直方图)
@param n number of bins in hist(36)
@param mag_thr new features are added for entries in hist greater than this(主方向的值*0.8)
@param feat new features are clones of this with different orientations(当前特征点:已经
*/
static void add_good_ori_features( CvSeq* features, double* hist, int n,
double mag_thr, struct feature* feat )
{
struct feature* new_feat;
double bin, PI2 = CV_PI * 2.0;
int l, r, i;
for( i = 0; i < n; i++ )
{
l = ( i == 0 )? n - 1 : i-1;//前一个bin,当i=0 l=36;i=1 l=0;i=2 l=1;...
r = ( i + 1 ) % n;//后一个bin,当i=0 r=1;i=1 r=2;...i=35 r=0
if( hist[i] > hist[l] && hist[i] > hist[r] && hist[i] >= mag_thr ) //满足这个条件,才是主方向/辅方向
{
bin = i + interp_hist_peak( hist[l], hist[i], hist[r] );//抛物线插值进一步精确bin
bin = ( bin < 0 )? n + bin : ( bin >= n )? bin - n : bin;//bin控制在0-36之间
new_feat = clone_feature( feat );//调用函数clone_feature
new_feat->ori = ( ( PI2 * bin ) / n ) - CV_PI;//根据bin求梯度方向ori,bin = cvRound( n * ( ori + CV_PI ) / PI2 )反过来
cvSeqPush( features, new_feat );//把new_feature压入关键点序列(前面有弹出)
free( new_feat );//释放空间
}
}
}
抛物线插值
公式:
//区间变为值
//原先的方向是一个角度区间,抛物线插值后,用顶点的横坐标作为主方向的值
/*
Interpolates a histogram peak from left, center, and right values
*/
#define interp_hist_peak( l, c, r ) ( 0.5 * ((l)-(r)) / ((l) - 2.0*(c) + (r)) )//代入抛物线插值的公式
特征点复制
//特征点的复制
/*
Makes a deep copy of a feature
@param feat feature to be cloned(当前特征点)
@return Returns a deep copy of feat
*/
static struct feature* clone_feature( struct feature* feat )
{
struct feature* new_feat;
struct detection_data* ddata;
new_feat = new_feature();
ddata = feat_detection_data( new_feat );
memcpy( new_feat, feat, sizeof( struct feature ) );//分配空间,完成复制
memcpy( ddata, feat_detection_data(feat), sizeof( struct detection_data ) );//分配空间,完成复制
new_feat->feature_data = ddata;
return new_feat;
}