【数据结构初阶】一、复杂度

一、算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

摩尔定律:(摩尔是因特尔公司的创始人)每十八个月, 内存空间就会翻倍。

 二、时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一 个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来(环境不同,具体运行时间就不同),才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个 分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法 的时间复杂度。

例1、请计算一下Func1基本操作执行了多少次?

void Func1(int N)
{
    int count = 0;
    for (int i = 0; i < N ; ++ i)
    {
         for (int j = 0; j < N ; ++ j)
         {
             ++count;
         }
    }
    for (int k = 0; k < 2 * N ; ++ k)
    {
         ++count;
    }
    int M = 10;
    while (M--)
    {
         ++count;
    }
    printf("%d\n", count);
}

 解:时间复杂度为 N*N+2*N+10 ;可以用函数来表示:F(N) = N*N+2*N+10;

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法(估算)。
 
由函数推导大O表示法的方法:
a、用常数1取代运行时间中的所有加法常数。
b、在修改后的运行次数函数中,只保留最高阶项。
c、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为O(N^2)。

例2、计算Func2的时间复杂度

void Func2(int N)
{
    int count = 0;
    for (int k = 0; k < 2 * N ; ++ k)
    {
         ++count;
    }
    int M = 10;
    while (M--)
    {
         ++count;
    }
    printf("%d\n", count);
}

 解: F(N)=2*N+10;   时间复杂度是O(N)

例3、计算Func3的时间复杂度

void Func3(int N, int M)
{
    int count = 0;
    for (int k = 0; k < M; ++ k)
    {
         ++count;
    }
    for (int k = 0; k < N ; ++ k)
    {
         ++count;
    }
    printf("%d\n", count);
}

解: 时间复杂度是O(M+N);   此时有多种情况        

        a、不知道M和N的大小关系:  O(M+N)

        b、M远大于N:                        O(M)

        c、N远大于M:                        O(M)

        d、M和N差不多大时:             O(M) 或 O(N) 都可以

例4、计算Func4的时间复杂度

void Func4(int N)
{
    int count = 0;
    for (int k = 0; k < 100; ++ k)
    {
         ++count;
    }
    printf("%d\n", count);
}

解:当知道的循环次数是常数次时,时间复杂度是 O(1)

例5、计算 strchr 的时间复杂度

const char * strchr ( const char * str , int character );
解: 此库函数用于查找一个字符,此时要看最坏的情况,即查找的字符在字符串中没有,这时会循环N次。所以该函数的时间复杂度是O(N)。

例6、BubbleSort的时间复杂度

void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
         int exchange = 0;
         for (size_t i = 1; i < end; ++i)
         {
             if (a[i-1] > a[i])
             {
                 Swap(&a[i-1], &a[i]);
                 exchange = 1;
             }
         }
         if (exchange == 0)
         break;
    }
}

 解:此时计算的是两个数比较的次数,也就是第二个for循环中的if语句的执行次数,使用公式表达式 F(N)=N*(N-1)/2;所以时间复杂度是 O(N^2)

例7、BinarySearch的时间复杂度

int BinarySearch(int* a, int n, int x)
{
    assert(a);
    int begin = 0;
    int end = n;
    while (begin < end)
    {
         int mid = begin + ((end-begin)>>1);
         if (a[mid] < x)
             begin = mid+1;
         else if (a[mid] > x)
             end = mid;
         else
             return mid;
    }
    return -1;
}

解: 1. 要看最坏的情况(就是找不到这个数据),每找一次,数据的长度就会减少一半。

由此可以推出,2^X=N,即  X=log 2 N 所以时间复杂度是 O(log2N)

例8、计算阶乘递归的时间复杂度

long long Fac(size_t N)
{
    if(0==N)
        return 1;
    return Fac(N-1)*N;
}

 解:O(N);递归次数*每次递归的次数;

例9、计算斐波那契递归的时间复杂度

long long Fib(size_t N)
{
    if(N<3)
        return 1;
    return Fib(N-1)+Fib(N-2);
}

解:通过画图可以得知

 

首先通过上述代码可得函数: Fib(N)=2^0+2^1+2^2+2^(N-1)-X;

计算后可得,Fib(N)=2^N-1-X;

所以时间复杂度是:O(2^N)。

斐波那契数列尽量不要使用递归的方式计算,会导致计算时间太长。

三、空间复杂度

空间复杂度是对一个算法在运行过程中 临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用 O 渐进表示法
 
注:
函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时显示申请的额外空间来确定。
例1、计算BubbleSort的空间复杂度
void BubbleSort(int* a, int n)
{
     assert(a);
     for (size_t end = n; end > 0; --end)
     {
         int exchange = 0;
         for (size_t i = 1; i < end; ++i)
         {
             if (a[i-1] > a[i])
             {
                 Swap(&a[i-1], &a[i]);
                 exchange = 1;
             }
         }
         if (exchange == 0)
         break;
     }
}

解:计算得是额外需要的空间,所以需要计算得是除了变量a和n之外的变量。此时的额外变量有end、exchange、i;所以空间复杂度是O(1)

 例2、计算Fibnoacci的空间复杂度

long long* Fibonacci(size_t n)
{
     if(n==0)
         return NULL;
 
     long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
     fibArray[0] = 0;
     fibArray[1] = 1;
     for (int i = 2; i <= n ; ++i)
     {
         fibArray[i ] = fibArray[ i - 1] + fibArray [i - 2];
     }
     return fibArray;
}

解: 此时计算得是斐波那契数列的数组,开辟了一个n+1容量的数组,空间复杂度是O(N)。

例3、计算阶乘递归Fac的空间复杂度

long long Fac(size_t)
{
    if(N==1)
    {
        return 1;
    }
    return Fac(N-1)*N;
}

解:递归了N次,所以会建立N个栈帧,所以空间复杂度是O(N)。需要看递归的深度。

例4、计算斐波那契递归的空间复杂度

long long Fib(size_t N)
{
    if(N<3)
        return 1;
    return Fib(N-1)+Fib(N-2);
}

 解:

 

如上图,函数递归时会先沿着紫色箭头开辟函数的栈帧空间进行一次计算,当计算完毕后,后边的计算是会重复使用前边的空间,所以只计算使用最多的空间即可。所以空间复杂度是O(N)。

练习题:

习题1、消失的数字

 方法一、首先给数组排序,然后看后一个数是不是前一个数+1;但是使用qsort快排的时间复杂度是O(n*log2n),不符合题意;

方法二、(0+1+2+……+n)-(a[0]+a[1]+……+a[n-1])看差是多少;时间复杂度是O(N);

 

方法三、创建一个数组,数组中的值是几就在那个位置写一个值。空间复杂度是O(N);

 

方法四、各一个值x=0,先跟0 ~ n的所有制异或,在跟数组中的每个值异或。  两个相同的数异或为0;

int missingNumber(int* nums,int numsSize)
{
    int x = 0;
    for (int i = 0; i <= numsSize; ++i)
    {
        x ^= i;
    }
    for (int i = 0; i < numsSize; ++i)
    {
        x ^= nums[i];
    }

    return x;
}

 习题2、旋转数组

 

 方法一、暴力求解,旋转k次,时间复杂度:O(N*k),空间复杂度是O(1);

 

方法二、开辟额外空间,将后k个拷贝到新开辟的空间,再将前边的n-k个拷到后边,再将新开辟的空间中的数据拷回去。

 

方法三、

void Reverse(int* nums, int left, int right)
{
    while (left < right)
    {
        int tmp = nums[left];
        nums[left] = nums[right];
        nums[right] = tmp;

        ++left;
        --right;
    }
}

void rotate(int* nums, int numsSize, int k)
{
    if (k >= numsSize)
    {
        k %= numsSize;
    }
    Reverse(nums, 0, nums - k - 1);
    Reverse(nums, numsSize - k, numsSize - 1);
    Reverse(nums, 0, numsSize - 1);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值