这个东西叫指数循环节,有个公式:
A^x % m = A^(x%phi(m)+phi(m)) % m (x >= phi(m))
其中phi(m)是m的欧拉函数值,然后用递归层层推下来
递归的时候mod的值会变化,因为公式里等号右边x mod的是外面m的欧拉函数值,再往深层递归m的欧拉函数值又变成了上一层的m,此时等号右边x mod的是m的欧拉值的欧拉值,所以mod 的m是变化的
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<vector>
#include<set>
#include<queue>
#include<stack>
#include<stdlib.h>
#include<ctime>
#define PI acos(-1)
using namespace std;
int a[10];
int mm;
int eular(int n)
{
int ret=1,i;
for(i=2; i*i<=n; i++)
if(n%i==0)
{
n/=i,ret*=i-1;
while(n%i==0)
n/=i,ret*=i;
}
if(n>1)
ret*=n-1;
return ret;
}
int mode(int a,int n,int m)
{
int t = a;
int ans = 1;
while(n)
{
if(n & 1)
{
ans = ans * t % m;
}
n >>= 1;
t = t * t % m;
}
return ans;
}
int solve(int c,int n,int m)
{
if(c==n-1) return a[c]%m;
int temp=solve(c+1,n,eular(m));
int ans=mode(a[c],temp+eular(m),m);
return ans;
}
int main()
{
int ans;
int m,n,i,k=1;
char c;
while(cin>>m)
{
c=getchar();
if(c=='#') break;
mm=eular(m);
cin>>n;
for(i=0; i<n; i++)
scanf("%d",&a[i]);
ans=solve(0,n,m);
printf("Case #%d: %d\n",k++,ans);
}
return 0;
}