Uva--10692--Huge Mods【数论】

博客探讨了指数循环节的概念,介绍了公式A^x % m = A^(x%phi(m)+phi(m)) % m,并解释了如何利用欧拉函数phi(m)进行递归计算。在递归过程中,模值m随着层次变化,对应于不同层级的m的欧拉函数值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2^3^4^5 mod 10 = ?

这个东西叫指数循环节,有个公式:

A^x % m = A^(x%phi(m)+phi(m)) % m (x >= phi(m))

其中phi(m)是m的欧拉函数值,然后用递归层层推下来


递归的时候mod的值会变化,因为公式里等号右边x mod的是外面m的欧拉函数值,再往深层递归m的欧拉函数值又变成了上一层的m,此时等号右边x mod的是m的欧拉值的欧拉值,所以mod 的m是变化的


#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<vector>
#include<set>
#include<queue>
#include<stack>
#include<stdlib.h>
#include<ctime>
#define PI acos(-1)
using namespace std;
int a[10];
int mm;
int eular(int n)
{
    int ret=1,i;
    for(i=2; i*i<=n; i++)
        if(n%i==0)
        {
            n/=i,ret*=i-1;
            while(n%i==0)
                n/=i,ret*=i;
        }
    if(n>1)
        ret*=n-1;
    return ret;
}
int mode(int a,int n,int m)
{
    int t = a;
    int ans = 1;
    while(n)
    {
        if(n & 1)
        {
            ans = ans * t % m;
        }
        n >>= 1;
        t =  t * t % m;
    }
    return ans;
}
int solve(int c,int n,int m)
{
    if(c==n-1) return a[c]%m;
    int temp=solve(c+1,n,eular(m));
    int ans=mode(a[c],temp+eular(m),m);
    return ans;
}
int main()
{
    int ans;
    int m,n,i,k=1;
    char c;
    while(cin>>m)
    {
        c=getchar();
        if(c=='#')  break;
        mm=eular(m);
        cin>>n;
        for(i=0; i<n; i++)
            scanf("%d",&a[i]);
        ans=solve(0,n,m);
        printf("Case #%d: %d\n",k++,ans);
    }
    return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值