Uva--10692--Huge Mods【数论】

博客探讨了指数循环节的概念,介绍了公式A^x % m = A^(x%phi(m)+phi(m)) % m,并解释了如何利用欧拉函数phi(m)进行递归计算。在递归过程中,模值m随着层次变化,对应于不同层级的m的欧拉函数值。
摘要由CSDN通过智能技术生成

2^3^4^5 mod 10 = ?

这个东西叫指数循环节,有个公式:

A^x % m = A^(x%phi(m)+phi(m)) % m (x >= phi(m))

其中phi(m)是m的欧拉函数值,然后用递归层层推下来


递归的时候mod的值会变化,因为公式里等号右边x mod的是外面m的欧拉函数值,再往深层递归m的欧拉函数值又变成了上一层的m,此时等号右边x mod的是m的欧拉值的欧拉值,所以mod 的m是变化的


#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<vector>
#include<set>
#include<queue>
#include<stack>
#include<stdlib.h>
#include<ctime>
#define PI acos(-1)
using namespace std;
int a[10];
int mm;
int eular(int n)
{
    int ret=1,i;
    for(i=2; i*i<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值