UVALive--6571--It Can Be Arranged【拆点+isap】最小割

链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4582

题意:有n门课程,每个课程有个开始时间和结束时间,和参加人数,现要租借教室来上课。再告诉你一个矩阵,a[i][j]表示第j门课如果在第i门课后使用第i门课的教室,需要a[i][j]的时间来打扫,i的结束时间+a[i][j]必须严格小于j的开始时间。问最少需要借多少教室。


这道题的建图模型以前是做过的,和poj3469(解题报告)思路有些像,但是今天做比赛的时候没有做出来,还以为是贪心。。也想了一会如何建图,没有想出来,后来看了宝哥的代码才发现以前做过这种题,实在惭愧,这道是应该做出来的题目。以后还是得定期看自己的博客,复习以前的东西,不然都忘光了。

思路:记录每个课程都单独使用教室需要的教室数目sum,用网络流求出最多有几间教室可以共用num,sum-num就是需要的教室数量。

建图:将每个课程看作一个顶点p,将p拆为p‘和p’‘,源点向p’连弧,容量为这门课单独需要使用的教室数量rooms,p‘’向汇点连弧容量同样为rooms,对于之后输入的打扫时间矩阵a,如果i的结束时间+a[i][j]严格小于j的开始时间,则将i‘与j’‘连弧,容量为INF。这样建图,对于图中任意一个割,源点、汇点都不连通,所以每个教室的节点只会连向源点、汇点其中之一,即保证了每个课程都有教室。求出此网络的最大流,等同于最小割,表示的是最多有多少个房间能共用。


#include<cstring>
#include<string>
#include<fstream>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cctype>
#include<algorithm>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<stack>
#include<ctime>
#include<cstdlib>
#include<functional>
#include<cmath>
using namespace std;
#define PI acos(-1.0)
#define MAXN 101000
#define eps 1e-7
#define INF 0x7FFFFFFF
#define LLINF 0x7FFFFFFFFFFFFFFF
#define seed 1313131
#define MOD 1000000007
#define ll long long
#define ull unsigned ll
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1

struct node{
    int u,v,w,next;
}edge[500000];
int head[220],dist[220],cur[220],fa[220],num[220],vis[220];
int n,m,k,cnt,nn,src,sink;
void add_edge(int a,int b,int c){
    edge[cnt].u = a;
    edge[cnt].v = b;
    edge[cnt].w = c;
    edge[cnt].next = head[a];
    head[a] = cnt++;
}
void bfs()
{
    int x,i,j;
    queue<int> q;
    memset(dist,-1,sizeof(dist));
    q.push(sink);
    dist[sink] = 0;
    while(!q.empty()){
        x = q.front();
        q.pop();
        for(i=head[x];i!=-1;i=edge[i].next){
            if(dist[edge[i].v]<0){
                dist[edge[i].v] = dist[x] + 1;
                q.push(edge[i].v);
            }
        }
    }
}

int augment()
{
    int x=sink,a=INF;
    while(x!=src){
        a = min(a,edge[fa[x]].w);
        x = edge[fa[x]].u;
    }
    x=sink;
    while(x!=src){
        edge[fa[x]].w -= a;
        edge[fa[x]^1].w += a;
        x = edge[fa[x]].u;
    }
    return a;
}

int isap()
{
    int i,x,ok,minm,flow=0;
    memset(num,0,sizeof(num));
    bfs();
    for(i=0;i<=nn+5;i++) if(dist[i]!=-1) num[dist[i]]++;
    for(i=0;i<=nn+5;i++) cur[i] = head[i];
    x=src;
    while(dist[src]<nn){
        if(x==sink){
            flow += augment();
            x = src;
        }
        ok=0;
        for(i=cur[x];i!=-1;i=edge[i].next){
            if(edge[i].w && dist[x]==dist[edge[i].v]+1){
                ok=1;
                fa[edge[i].v] = i;
                cur[x] = i;
                x = edge[i].v;
                break;
            }
        }
        if(!ok){
            minm = nn + 5;
            for(i=head[x];i!=-1;i=edge[i].next)
                if(edge[i].w && dist[edge[i].v]<minm)   minm=dist[edge[i].v];
            if(--num[dist[x]]==0)break;
            num[dist[x]=minm+1]++;
            cur[x]=head[x];
            if(x!=src)  x=edge[fa[x]].u;
        }
    }
    return flow;
}
struct node1{
    int s,t,num;
}a[120];
int main(){
    int i,j,t,cas=1;
    int b,c;
    scanf("%d",&t);
    while(t--){
        memset(head,-1,sizeof(head));
        cnt = 0;
        scanf("%d%d",&n,&m);
        src = 0;
        sink = 2 * n + 1;
        nn = sink + 1;
        int sum = 0;
        for(i=1;i<=n;i++){
            scanf("%d%d%d",&a[i].s,&a[i].t,&a[i].num);
            int temp;
            if(a[i].num%m)  temp = a[i].num / m + 1;
            else    temp = a[i].num / m;
            sum += temp;
            add_edge(src,i,temp);
            add_edge(i,src,0);
            add_edge(i+n,sink,temp);
            add_edge(sink,i+n,0);
        }
        for(i=1;i<=n;i++){
            for(j=1;j<=n;j++){
                scanf("%d",&b);
                if(a[i].t+b<a[j].s){
                    add_edge(i,j+n,INF);
                    add_edge(j+n,i,0);
                }
            }
        }
        printf("Case %d: %d\n",cas++,sum-isap());
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值