2、周志华西瓜书笔记:模型评估与选择

2.1 经验误差与过拟合
错误率:分类错误的样本数占样本总数的比例。
精度:1-错误率=精度
误差:学习器的实际预测输出与样本的真实输出之间的差异。
训练误差/经验误差:学习器在训练集上的误差。
泛化误差:在新样本上的误差。
过拟合:学习器学习能力太好导致把训练本身的特点当作所有样本都具有的特点,导致泛化能力下降。

2.2评估方法
通常,我们通过实验测试学习器的泛化误差来进行评估进而做出选择,以测试集的测试误差作为泛化误差的近似,测试集与训练集应该尽可能互斥。

训练集与测试集处理方法:
1、留出法
直接将数据集D划分成两个互斥的集合,其中一个作为训练集S,一个作为测试集T,即D=S∪T,S∩T=∅.
注意:训练/测试集的划分要尽可能保持数据分布的一致性,避免因数据划分过程引入额外的偏差从而对最终结果产生影响,例如在分类任务中至少要保证样本的类别比例相似。
分层采样:保留类别比例的采样方式。

2、交叉验证法
先将数据集D划分为k个大小相似的互斥子集,即D=D1∪D2∪D3…∪Dk,Di∩Dj=∅(i≠j).
每个子集尽可能保持数据分布的一致性,即从D中通过分层采样得到,之后用K-1个子集作为训练集,剩下的那一个作为测试集,这样可以获得K组训练/测试集,可以进行K次训练和测试。
显然,交叉验证法评估结果的稳定性和保真性很大程度取决于K,因此,又叫K折交叉验证。
与留出法相似,D的划分方式也有多种,K折交叉验证法通常要随机使用不同的划分重复P次,最终的评估结果是这P次K折交叉验证结果的均值,比如:10次10折交叉验证。
特殊情形:留一法,m个样本,令k=m。

3、自助法
自助法直接以自助采样法为基础。给定包含m个样本的数据集D,我们对它进行采样产生数据集D’:每次随机从D中挑选一个样本,将其拷贝放入D’,然后再把该样本放回初始数据集D,使得该样本下次仍有机会被采到,这个过程重复执行m次后,我们就得到了包含m个样本的数据集D’。
样本在m次采样中始终不被采到的概率:0.368
D’作训练集,D\D’作为测试集。测试集占36.8%,这样的测试结果,亦称“包外估计”。
自助法适用于数据集较小、难以有效划分训练与测试集的情况,但是会改变初始数据集的分布,容易引入估计偏差。

调参与最终模型:给定包含m个样本的数据集D,在模型评估与选择过程中由于需要留出一部分数据进行评估测试,所以,在模型选择完成后,我们需要再次用D进行训练模型,在这个训练过程中,我们用了m个样本,这才是我们最终提交给用户的模型。

2.3性能度量
性能度量:衡量模型泛化能力的标准。
回归任务最常用的性能度量:均方误差
E ( f ; D ) = 1 m ∑ i = 1 m ( f ( x i ) − y i ) 2 E(f;D)=\frac{1}{m}\sum_{i=1}^{m}{(f(x_i)-y_i)^2} E(f;D)=m1i=1m(f(xi)yi)2
更一般的,对于数据分布D和概率密度函数P(·),均方误差可以描述成:
E ( f ; D ) = ∫ x   D ( f ( x ) − y ) 2 p ( x )   d x E(f;D)=\int_{x~D}{(f(x)-y)^2p(x)}\,{\rm d}x E(f;D)=x D(f(x)y)2p(x)dx

2.3.1 错误率与精度(分类任务常用性能度量)
对样例集D,分类错误率定义为:
E ( f ; D ) = 1 m ∑ i = 1 m Ⅱ ( f ( x i ) ≠ y i ) E(f;D)=\frac{1}{m}\sum_{i=1}^{m}Ⅱ(f(x_i)≠y_i) E(f;D)=m1i=1m(f(xi)=yi)
个人理解,分类时,结果一致,为0,结果不一致为1,所以,对m训练数据的样本进行统计,统计错误的个数,最后除以总数m,即为错误率。

精度定义:
E ( f ; D ) = 1 m ∑ i = 1 m Ⅱ ( f ( x i ) = y i ) = 1 − E ( f ; D ) E(f;D)=\frac{1}{m}\sum_{i=1}^{m}Ⅱ(f(x_i)=y_i)=1-E(f;D) E(f;D)=m1i=1m(f(xi)=yi)=1E(f;D)
这是因为精度=1-错误率。

2.3.2 查准率、查全率与F1
查准率就是你认为是对的样例中,到底有多少真是对的。
查全率就是所有对的样例,你找出了多少,或者说你判断对了多少。

以查准率为纵轴,查全率为横轴,作P-R曲线。
如果一个学习器的P-R曲线被另一个学习器的曲线完全包住,则后者性能优于前者。

为了判断P-R曲线中,不同的学习器的性能优劣,引入BEP(P=R的平衡点),之后引入F1度量。
F1度量:
F 1 = 2 ∗ P ∗ R P + R = 2 ∗ T P 样 例 总 数 + T P − T N F1=\frac{2*P*R}{P+R}=\frac{2*TP}{样例总数+TP-TN} F1=P+R2PR=+TPTN2TP

F β F_β Fβ表示对查准率、查全率的偏好:
F β = ( 1 + β 2 ) ∗ P ∗ R ( β 2 ∗ P ) + R F_β=\frac{(1+β^2)*P*R}{(β^2*P)+R} Fβ=(β2P)+R(1+β2)PR
β等于1,为F1;β大于1,偏好查全率;β小于1,偏好查准率。

2.3.3 ROC与AUC
ROC曲线:纵轴是真正例率,横轴是假正例率。
AUC:ROC曲线下的面积。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值