关闭

边覆盖、边独立集

112人阅读 评论(0) 收藏 举报
分类:

边覆盖

所谓边覆盖集E*,就是G中所有的顶点都是E*中某条边的邻接顶点(边覆盖顶点)

极小边覆盖:若边覆盖E*的任何真子集都不是边覆盖,则称E*是极小边覆盖。

最小边覆盖:边数最少的边覆盖集称为最小边覆盖。

边覆盖数:最小的边覆盖所含的边数称为边覆盖数。

边独立

边独立集:设无向图为G(V,E),边的集合E*属于E,若E中任何两条边均不相邻,则称E*为G的边独立集,也称E*为G的匹配。所谓任何两条边均不相邻,通俗的讲,就是任何两条边都没有公共顶点。

极大匹配:若在E*中加入任意一条边所得到的集合都不匹配,则称E*为极大匹配。

最大匹配:边数最多的匹配称为最大匹配。

边独立数:最大匹配的边数称为边独立数或匹配数。

盖点与未盖点

设v是图G的一个顶点,如果v与M中的某条边关联,则称v为M的盖点。如果v不与任意一条属于匹配M的边相关联,则称v是匹配M的未盖点。

最大边独立集(最大匹配)与最小边覆盖集之间的联系

(1)从最大匹配出发,通过增加关联未盖点的边获得最小边覆盖。

(2)从最小边覆盖出发,通过移除相邻的一条边获得最大匹配。

定理】设无向图G的顶点个数为n,且G中无孤立点

(1)设M为G的一个最大匹配,对于G中M的每个未盖点v,选取一条与v关联的边所组成的边的集合为N,则W= M∪N为G中的最小边覆盖。

(2)折W1为G的最小边覆盖,若G中存在相邻的边就移除其中的一条,设移除的边集为N1,则M1=W1-N1为G中一个最大匹配。

(3)G中边覆盖数α1(G)与匹配数β1(G),满足α1(G)+β1(G) = n。

二分图最小点权覆盖

从x或者y集合中选取一些点,使这些点覆盖所有的边,并且选出来的点的权值尽可能小。

建模:

    原二分图中的边(u,v)替换为容量为INF的有向边(u,v),设立源点s和汇点t,将s和x集合中的点相连,容量为该点的权值;将y中的点同t相连,容量为该点的权值。在新图上求最大流,最大流量即为最小点权覆盖的权值和。

二分图最大点权独立集

 在二分图中找到权值和最大的点集,使得它们之间两两没有边。其实它是最小点权覆盖的对偶问题。答案=总权值-最小点覆盖集。具体证明参考胡波涛的论文。

  1. 最大点权独立集: 
  2. 转化为最小点权覆盖问题,最大点权独立集=总权值-最小点权覆盖集 
  3. 最小点权覆盖: 
  4. 设立源点s和t,s连边到点i,容量为i点的权值;点j连边到t,容量为j点权值;原二分图中的边容量为INF,求最大流即为最小点权覆盖。 

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:14298次
    • 积分:1172
    • 等级:
    • 排名:千里之外
    • 原创:107篇
    • 转载:8篇
    • 译文:0篇
    • 评论:0条