图论学习笔记(七)支配集,覆盖集,独立集,匹配

前言:参考教材:《集合论与图论》第三版 屈婉玲,刘捍贫,刘田

13.1 支配集、点覆盖集、点独立集

支配集:G为无向图,若V*为V(G)的子集,且对任意v_i属于V-V*,都存在V*中的一个点和v_i关联,则称V*为G的支配集;如果V*的任何子集都不是支配集,则成为极小支配集;顶点数最少的支配集称为最小支配集,其中的顶点个数称为支配数,记为γ_0(G),简记为γ_0

Theorem:无向图G中无孤立顶点(但可以不连通),V_1*为一个极小支配集,则V-V_1*中也存在一个极小支配集V_2*

Proof:只需要注意到V-V_1*本身也是一个支配集即可

独立集:无向图G中,V*包含于V,如果V*中任意两个顶点都不相邻,则称为G的独立集,如果V*中任意加入一个顶点都不再是独立集,则称为极大独立集;顶点数最多的独立集称为最大独立集;其顶点个数称为点独立数,记做β_0(G),简记为β_0

Theorem:极大独立集必定是极小支配集,但反之不然

点覆盖集:无向图G中,V*包含于V,如果V*中每条边都至少有一端点在V*中,则称V*为G的点覆盖集,简称为点覆盖集;设V*是点覆盖集,若V*的任何子集都不是点覆盖集,则称V*为极小覆盖集;顶点个数最少的点覆盖集称为最小点覆盖集;其元素个数称为点覆盖数,记做α_0(G),简记为α_0

Theorem:点覆盖集必定是支配集,但反之不然

Theorem:无向图G中无孤立点,V*为V的真子集,则V*为G的点覆盖集当且仅当V-V*为G的点独立集

Corollary:α_0+β_0=n

:若V*是V的子集,若导出子图G[V*]是完全图,则称V*是G中的团;设V*是G中的团,但再加入任何顶点都不是团,则称为极大团;顶点数最大的团称为最大图;顶点个数称为团数,记做ν_0(G),简记为ν_0

Theorem:V*是G中的团当且仅当V*是G的补图中的点独立集

Corollay:ν_0(G)=β_0(G)

Algorithm:求一个图的全体极小支配集,极小点覆盖集,极大独立集

逻辑运算:与/或:例如a,b;b,c;c,d;d,b为一个图

极小支配集:那么它的支配集要求每个顶点都被支配,而a仅与b相连,因此要求有a或b;b与a,c,d相连,因此要有b或a或c或d,…,因此我们最终可以列出一个算式:(a or b)and(b or a or c or d)and(c or b or d)and(d or c or b),然后根据吸收律和幂等律=>(a or b)and(b or c or d)=(a or c) and (a or d) and b,所以对应的极小支配集就是{a,c}{a,d}(b)

极小覆盖集:极小覆盖集则要求每一条边都被覆盖到,因此每条边的两个顶点之一都要放入。考虑上图,则要求(a or b)and(b or c)and(c or d)and(d or b)=(a or c or d)and(b or c)and(b or d)

极大点独立集:由于极大覆盖集的补图必为极小独立集,立得

**注:常用的逻辑运算法则:(a or b) and b=b,a or a=a, a and a=a,**即:(a+b)b=b,aa=a,a+a=a

13.2边覆盖集与匹配

边覆盖集:G是无向图,如果E*是E(G)的子集,并且使得任意顶点都和E*中的一条边关联,则称为G的边覆盖集;若E*的任意子集都不是边覆盖集,则称E*为极小边覆盖集,同理定义最小边覆盖集,边数称为边覆盖数,记作α_1(G),简记为α_1

匹配:如果E*为E(G)的子集,使得E*中任意两条边都不相邻,则称为边独立集,也称为匹配;若任意添加一条边都不是匹配,则称为极大匹配;边数最多的匹配称为最大匹配;其边数称为匹配数,记为β_1(G),简记为β_1

饱和/完美匹配/交错路径:如果M是G中的一个匹配,则:若(v_i,v_j)∈M,就称v_i和v_j被M匹配;对于任意顶点v,如果存在e∈M,使得v和e关联,则称v为M的饱和点,否则称v为M的非饱和点;如果G中的每个点都是饱和点,则称为完美匹配(即:任意一个点都被匹配到);在M和E(G)-M中交替取边的路径为交错路径,起点和终点都是非饱和点的交错路径称为可增广的交错路径,交错的圈称为交错圈

Theorem:G为无孤立点的n阶无向图,M是G中的一个最大匹配,则对于每个非饱和点v都在M中任意添加一条v的关联边,就可以得到一个G中的最小边覆盖集;如果W_1是G中的最小边覆盖集,则如果W_1中存在相邻的边就移走一条边,直到无相邻边为止,得到的一定是一个最大匹配;α_1+β_1=n

Corollay:M为G中的任意一个匹配,W为G中的任意一个边覆盖,则|M|≤|W|,并且取等当且仅当M是一个完美匹配;W是一个最小边覆盖

Theorem:|匹配|≤|点覆盖|,|点独立集|≤|边覆盖|

Theorem:(Berge)M为G中的最大匹配当且仅当G中不含M可增广路径

Proof:一方面,如果G中含有M可增广路径Γ,则M‘=M⊕E(Γ)仍然是一个匹配,且边数增加1

另一方面,如果M_1是一个最大匹配,则只要证明|M|=|M_1|,考虑G[M⊕M_1]在交错路径上的分解即可

**Theorem:(Tutt)**n阶无向图G具有完美匹配当且仅当对于任意的V(G)的真子集V’,p_奇(G-V’)≤|V’|

其中p_奇表示图中奇数阶连通分支的个数

推论:任何无桥3-正则图都有完美匹配

13.3 二部图中的匹配

完备匹配:如果G=<V_1,V_2,E>为二部图,且|V_1|≤|V_2|,M为G中的一个最大匹配并且|M|=|V_1|,则称M为G中从V_1到V_2的完备匹配;显然,如果|V_1|=|V_2|,则是完美匹配

Theorem:(Hall)一个二部图G中,|V_1|≤|V_2|,存在完备匹配当且仅当对任意的V_1的子集S,|N(S)|≥|S|:即:每n个人的伴侣数量都大于等于n,该条件称为相导性条件

Corollary:如果V_1中每个顶点至多关联t条边,V_2中每个顶点至少关联t条边,则存在完备匹配,该条件称为t条件

Theorem:k-正则二部图中存在k个边不重的完美匹配

Theorem:G为无孤立点的二部图,则α_0= β_1

小结

点支配:点覆盖点;点覆盖:点覆盖边;点独立:补图的K_n

边支配:无 ;边覆盖:边覆盖点;匹配:边独立

习题类型

1.求一个无向图G中的所有极小支配集,所有极小点覆盖集,所有极大点独立集

Bool运算,yyds,一定要记住这四条规则:(a+b)b=b,ab+b=b,aa=a,a+a=a

2.做一些和完美匹配有关的小游戏

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值