关闭

耶鲁博弈论笔记

标签: 博弈论策略收益纳什均衡最佳对策
1071人阅读 评论(0) 收藏 举报
分类:

1.Introduction Five First Lessons
method of studying stategic situation
do not play a strictly dominated strategy
prisoner’s dilemma
payoffs
you can not get what you want,till you know what you want
put yourself in other’s shoes and try to figure out what they
will do

2.Putting Yourselves into Other People’s Shoes
players/strategies/payoffs

3.Iteraive Deletion and the Median-Voter Theorem
iterative deletion of dominated strategies
the Median Voter Theorem
best response

4.Best Responses in Soccer and Bussiness Partnerships
do not choose a strategy that is never a best response to any
belief
externality
nash equilibrium

5.Nash Equilibrium Bad Fashion and Bank Runs
no regrets
self-fulfilling beliefs
no strictly dominated strategy could ever be played in the nash
equilibrium
to guess and check
play converged fairly rapidly to the nash equilibrium
coordination problem(communication can work)
self-enforcing agreement

6.Nash Equilibrium Dating and Cournot
games of strategic complements
the battle of the Sexes
cournot Duopoly(quantity)
strategic substitutes

7.Nash Equilibrium Shopping,Standing and Voting on a line
Bertrand competition(price)
linear city model
Candidate-Voter model

8.Nash Equilibrium Location,Segregation and Randomization
tipping point
mixed strategies
each of their individual choices add up to this social outcome

9.Mixed Strategies in Theory and Tennis

10.Mixed Strategies in Baseball,Dating and Playing Your Taxes
randomize
Three different ways to think about randomization in equilibrium or out of equilibrium:
1.genuinely randomization
2.something about people’s belief
3.something about the proportion of people who are doing something in society

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:245558次
    • 积分:4193
    • 等级:
    • 排名:第7303名
    • 原创:177篇
    • 转载:10篇
    • 译文:1篇
    • 评论:83条
    最新评论