关闭

Network of Schools(POJ 1236)(强连通+缩点)(Tarjan算法)

177人阅读 评论(0) 收藏 举报
分类:

http://acm.hust.edu.cn/vjudge/problem/17001

题意:N个学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输,问题1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件。2,至少需要添加 几条传输线路(边),使任意向一个学校发放软件后,经过若干次传送,网络内所有的学校最终都能得到软件。 (来自北京大学暑期集训课件)

题解:
由于有向无环图中所有入度不为0的点,一定可以由某个入度为0的点出发可达。 所以对于问题1,只用求有向无环图中一共有多少入度为0的点,具体思路与方法可以看一下我的上一篇写缩点的那篇博客,里面有计算出度为0的详细解释,入度为0类似,答案就是num(in == 0)。对于问题2,就需要把所有点的出度和入度都变为非零值,由于问的是至少,所以先连min(num(in == 0), num(out == 0))条线,把出度和入度为0的连一起一部分,如果出入度为0点数目不同,则还需要把多的那些点和出(入)度不为0的点连起来,这样的话整个图就变成了一个连通图,问题2答案就是max(num(in == 0), num(out == 0))

思考:
1、有向无环图中所有入度不为0的点,一定可以由某个入度为0的点出发可达。

#include <iostream>
#include <cstdio>
#include <string>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
#include <map>
#include <set>
#include <queue>

using namespace std;

const int maxn = 200;
const int maxm = 10010;

struct Edge{
    int to, next;
}edge[maxm];

int head[maxn], tot;
int low[maxn], dfn[maxn], Stack[maxn], Belong[maxn];
int Index, top;
int scc;
bool Instack[maxn];
int num[maxn];
int n;

void addedge(int u, int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;
}

void Tarjan(int u)
{
    int v;
    low[u] = dfn[u] = ++Index;
    Stack[top++] = u;
    Instack[u] = true;
    for (int i = head[u]; i != -1; i = edge[i].next) {
        v = edge[i].to;
        if (!dfn[v]) {
            Tarjan (v);
            if (low[u] > low[v]) low[u] = low[v];
        } else if (Instack[v] && low[u] > dfn[v]) low[u] = dfn[v];
    }
    if (low[u] == dfn[u]) {
        scc++;
        do{
            v = Stack[--top];
            Instack[v] = false;
            Belong[v] = scc;
            num[scc]++;
        } while (v != u);
    }
}

void solve(int n)
{
    memset (dfn, 0, sizeof(dfn));
    memset (Instack, false ,sizeof(Instack));
    memset (num, 0, sizeof(num));
    Index  = scc = top = 0;
    for (int i = 1; i <= n; i++) {
        if (!dfn[i]) Tarjan (i);
    }
    if (scc == 1) {
        printf ("1\n0\n");
    } else {
        int in[maxn], out[maxn];
        memset (in, 0, sizeof(in));
        memset (out, 0, sizeof(out));

        //Á´Ê½Ç°ÏòÐÇ
        for (int u = 1; u <= n; u++) {
            for (int i = head[u]; i != -1; i = edge[i].next) {
                int v = edge[i].to;
                if (Belong[u] != Belong[v]) {
                    in[Belong[v]]++;
                    out[Belong[u]]++;
                    //printf ("x%d->x%d\n", u, v);
                }
            }
        }
        int ans1 = 0, ans2= 0;
        for (int i = 1; i <= scc; i++) {
            if (!in[i]) ans1++;
            if (!out[i]) ans2++;
        }
        printf ("%d\n%d\n", ans1, max (ans1, ans2));
    }
}

void init()
{
    tot = 0;
    memset (head, -1, sizeof(head));
}

int main()
{
    #ifndef ONLINE_JUDGE
    freopen ("in.txt", "r", stdin);
    #endif // ONLINE_JUDGE
    scanf ("%d", &n);
    init ();
    for (int i = 1; i <= n; i++) {
        int Re;
        while (scanf ("%d", &Re) != EOF) {
            if (Re == 0) break;
            addedge (i, Re);
        }
    }
    solve (n);
    return 0;
}
0
0
查看评论

POJ 1236 Network of Schools (强连通分量tarjan)

题意: 简单来说,给出一张有向图,问至少选择几个点可以遍历全图 和 至少加几条边使任一个点出发都可以遍历全图 分析: 这是一个与强联通分量有关的问题,在强联通分量中任意一个点都可以到达其他点,那么首先对整张图进行缩点操作,将整张图的强联通分量提取出来,tarjan算法操作之后很容易观察到一张图变...
  • Forever_wjs
  • Forever_wjs
  • 2016-07-24 20:31
  • 537

poj1236 - Network of Schools

想看更多的解题报告: http://blog.csdn.net/wangjian8006/article/details/7870410              &...
  • wangjian8006
  • wangjian8006
  • 2012-08-20 23:56
  • 3873

POJ 1236(tarjan 强连通分量 缩点)

POJ1236题目大意问,对于一个DAG(又向无环图): 1.至少要选几个点,才能从这些点出发到达所有点 2.至少加入几条边,就能从图中任何一个点出发到达所有点分析先求DAG的强连通分量数,再缩点,可以用tarjan算法来做。 第一个问题:不难想到答案就是缩点之后入度为0的点的个数 第二个问...
  • mmy1996
  • mmy1996
  • 2017-02-22 22:11
  • 510

poj1236-Network of Schools

Network of Schools Time Limit:1000MS    Memory Limit:10000KB    64bit IO Format:%I64d & %I64u De...
  • lljjccsskk
  • lljjccsskk
  • 2015-08-18 10:56
  • 271

POJ 1236Network of Schools

POJ 1236Network of Schools 描述 有一些学校连到了一个电脑网络中。这些学校达成了一个协议:每个学校保存一个其他学校名字的列表,列出它发送软件能到达的学校(即接收学校)。注意:如果B在A学校的发送列表中,那么A不一定在B学校的列表中。你需要写一个程序,计算最小的学校数量...
  • quioiup
  • quioiup
  • 2016-07-18 21:34
  • 107

POJ 2186【Tarjan算法(模板_缩点)】

//在一张有向无环图G,图G会包含很多环(环里面的点是等价的), //当然可以把环缩成一个点(利用tarjan缩点), //形成一棵树,题目要求是求除他以外的点都指向他,也就是只有一个叶子。 //因为一旦有两个,那么两个叶子没有联系,也就不满足除他以外所有点指向了。 //那么我们只要在缩点之后的图中...
  • KEYboarderQQ
  • KEYboarderQQ
  • 2016-05-15 10:13
  • 873

消息扩散(Tarjan算法缩点处理)

P2002 消息扩散 题目概述 给定一张有向图,不保证无自环与重边,信息从某几个节点出发,沿单向路传播,现在给出n个节点及其之间的道路,问至少需要在几个节点发布信息才能让这所有节点都得到信息。 数据规模:n≤100000,m≤500000 时空限制:1s,256M 思路: 利用缩点的思想...
  • Stockholm_Sun
  • Stockholm_Sun
  • 2017-08-11 10:33
  • 206

POJ-1236-Network of Schools【强连通分量】【缩点】

POJ-1236-Network of Schools
  • loy_184548
  • loy_184548
  • 2016-04-01 20:50
  • 509

强连通分量及缩点tarjan算法解析

强连通分量: 简言之 就是找环(每条边只走一次,两两可达) 孤立的一个点也是一个连通分量   使用tarjan算法 在嵌套的多个环中优先得到最大环( 最小环就是每个孤立点)   定义: int Time, DFN[N], Low[N]; DFN[i]表示 遍历到 i 点时是第几...
  • qq574857122
  • qq574857122
  • 2013-11-16 22:49
  • 11335

POJ 1236 Network of Schools(强连通 Tarjan+缩点)

POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少添加几条边使得有向图成为一个强连通图。 分析:  跟HDU 2767...
  • hcbbt
  • hcbbt
  • 2014-07-30 15:45
  • 965
    个人资料
    • 访问:27213次
    • 积分:1354
    • 等级:
    • 排名:千里之外
    • 原创:109篇
    • 转载:13篇
    • 译文:1篇
    • 评论:2条
    最新评论