Network of Schools(POJ 1236)(强连通+缩点)(Tarjan算法)

原创 2016年08月30日 19:56:17

http://acm.hust.edu.cn/vjudge/problem/17001

题意:N个学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输,问题1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件。2,至少需要添加 几条传输线路(边),使任意向一个学校发放软件后,经过若干次传送,网络内所有的学校最终都能得到软件。 (来自北京大学暑期集训课件)

题解:
由于有向无环图中所有入度不为0的点,一定可以由某个入度为0的点出发可达。 所以对于问题1,只用求有向无环图中一共有多少入度为0的点,具体思路与方法可以看一下我的上一篇写缩点的那篇博客,里面有计算出度为0的详细解释,入度为0类似,答案就是num(in == 0)。对于问题2,就需要把所有点的出度和入度都变为非零值,由于问的是至少,所以先连min(num(in == 0), num(out == 0))条线,把出度和入度为0的连一起一部分,如果出入度为0点数目不同,则还需要把多的那些点和出(入)度不为0的点连起来,这样的话整个图就变成了一个连通图,问题2答案就是max(num(in == 0), num(out == 0))

思考:
1、有向无环图中所有入度不为0的点,一定可以由某个入度为0的点出发可达。

#include <iostream>
#include <cstdio>
#include <string>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
#include <map>
#include <set>
#include <queue>

using namespace std;

const int maxn = 200;
const int maxm = 10010;

struct Edge{
    int to, next;
}edge[maxm];

int head[maxn], tot;
int low[maxn], dfn[maxn], Stack[maxn], Belong[maxn];
int Index, top;
int scc;
bool Instack[maxn];
int num[maxn];
int n;

void addedge(int u, int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;
}

void Tarjan(int u)
{
    int v;
    low[u] = dfn[u] = ++Index;
    Stack[top++] = u;
    Instack[u] = true;
    for (int i = head[u]; i != -1; i = edge[i].next) {
        v = edge[i].to;
        if (!dfn[v]) {
            Tarjan (v);
            if (low[u] > low[v]) low[u] = low[v];
        } else if (Instack[v] && low[u] > dfn[v]) low[u] = dfn[v];
    }
    if (low[u] == dfn[u]) {
        scc++;
        do{
            v = Stack[--top];
            Instack[v] = false;
            Belong[v] = scc;
            num[scc]++;
        } while (v != u);
    }
}

void solve(int n)
{
    memset (dfn, 0, sizeof(dfn));
    memset (Instack, false ,sizeof(Instack));
    memset (num, 0, sizeof(num));
    Index  = scc = top = 0;
    for (int i = 1; i <= n; i++) {
        if (!dfn[i]) Tarjan (i);
    }
    if (scc == 1) {
        printf ("1\n0\n");
    } else {
        int in[maxn], out[maxn];
        memset (in, 0, sizeof(in));
        memset (out, 0, sizeof(out));

        //Á´Ê½Ç°ÏòÐÇ
        for (int u = 1; u <= n; u++) {
            for (int i = head[u]; i != -1; i = edge[i].next) {
                int v = edge[i].to;
                if (Belong[u] != Belong[v]) {
                    in[Belong[v]]++;
                    out[Belong[u]]++;
                    //printf ("x%d->x%d\n", u, v);
                }
            }
        }
        int ans1 = 0, ans2= 0;
        for (int i = 1; i <= scc; i++) {
            if (!in[i]) ans1++;
            if (!out[i]) ans2++;
        }
        printf ("%d\n%d\n", ans1, max (ans1, ans2));
    }
}

void init()
{
    tot = 0;
    memset (head, -1, sizeof(head));
}

int main()
{
    #ifndef ONLINE_JUDGE
    freopen ("in.txt", "r", stdin);
    #endif // ONLINE_JUDGE
    scanf ("%d", &n);
    init ();
    for (int i = 1; i <= n; i++) {
        int Re;
        while (scanf ("%d", &Re) != EOF) {
            if (Re == 0) break;
            addedge (i, Re);
        }
    }
    solve (n);
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

poj1236Network of Schools_强连通分量缩点(tarjan算法解决)

poj1236题目链接 题目大意:有N个学校,从每个学校都能从一个单向网络到另外一个学校,两个问题 1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件。 2:至少需要添加...

POJ 1236 Network of Schools【强连通缩点】【Tarjan算法】

题意: 一些学校连成了网络, 在学校之间存在某个协议:每个学校都维护一张传送表,表明他们要负责将收到的软件传送到表中的所有学校。如果A在B的表中,那么B不一定在A的表中。 现在的任务就是,给...

Network of Schools POJ - 1236 tarjan强连通分量缩点

A number of schools are connected to a computer network. Agreements have been developed among those ...

POJ 1236 Network of Schools HDU 3836 Equivalent Sets 强连通分量+缩点 tarjan or kosaraju

1,POJ 1236 有一些学校连接到一个计算机网络,这些学校之间达成了一个协议:每个学校维护着一个学校列表,它向学校列表中的学校发布软件。注意,如果学校B在学校A的列表中,则A不一定在B的列表中。...

POJ 1236 Network of Schools(强连通 Tarjan+缩点)

POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及...
  • hcbbt
  • hcbbt
  • 2014年07月30日 15:45
  • 949

POJ 1236 Network of Schools【强连通分量分解&&缩点||tarjan&&缩点】

Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1423...
  • wyjwyl
  • wyjwyl
  • 2016年03月01日 16:21
  • 166

POJ1236 Network of Schools(强连通分量:Tarjan算法)

题意: 学校之间有网络系统,通过网络可以从一个学校定向的传递文件给另一个学校。现在问最少给几个学校传递文件使所有学校都能收到?最少添加几天网络边可以使整个网络连通? 要点: 就是一个基本的强连通...

poj1236 Network of Schools--Kosaraju算法 & 缩点 & 强连通分量

原题链接:http://poj.org/problem?id=1236 题意:n个学校,给定n行,第i行代表i学校到其他学校是可传输的,单向。问题1:初始至少需要向多少个学校发放软件,使得网...
  • LaoJiu_
  • LaoJiu_
  • 2016年09月10日 10:01
  • 472

POJ-1236 Network of Schools (强连通分量[Tarjan])

首先又得了解到一个定理:有向无环图中所有入度不为0的点,一定可以由某个入度为0的点出发可达。(由于无环,所以从任何入度不为0的点往回走,必然终止于一个入度为0的点) 则可以处理出所有的强连通分量,并将...

【POJ 1236】Network of Schools(强连通分量_tarjan)

问题描述 A number of schools are connected to a computer network. Agreements have been developed among ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Network of Schools(POJ 1236)(强连通+缩点)(Tarjan算法)
举报原因:
原因补充:

(最多只允许输入30个字)