JIEMI人体美化技术-职业重要 AI技术在快手人像美化中的应用地址:https://app6ca5octe2206.pc.xiaoe-tech.com/detail/v_6221b726e4b02b825850f9f6/3AI美化难点:手淘场景下的人脸AR美颜技术火山引擎AI人体人像美化技术最佳实践46:41...
研究生投稿被拒经历 2021.7.25 投稿IEEE JSTARS2021.7.27 被拒(查重率不过)2021.9.7 投稿Remote Sensing赠刊12021.9.10 被拒(创新度不够)2021.9.10 投稿Remote Sensing赠刊22021.9.13 被拒(创新度不够)2021.9.7 投稿Machine Vision and Applications2021.10.16 被拒(不适合)2021.11.1 投稿Multimedia Tools and Applications2022.
论文笔记:MPRNet: Multi-Stage Progressive Image Restoration MPRNet: Multi-Stage Progressive Image Restoration
论文速读之SUNet、MAXIM、Restormer、MIRNet、SwinIR、HINet、MPRNet、CSRNet 论文速读之Restormer、MIRNet、SwinIR、HINet、MPRNet、CSRNet
2021年度必看的图像去噪论文 Restormer: Efficient Transformer for High-Resolution Image Restoration HINet: Half Instance Normalization Network for Image Restoration Uformer: A General U-Shaped Transformer for Image Restoration Multi-Stage Progressive Image Restoration NBNet: Noi..
求助Latex标题如何加粗? latex的section标题为宋体加粗,一直无法加粗,加了bfseries也没用:\titleformat{\section}{xiaosan\song\bfseries}{\thesection}{1em}{}
2022计划(尽量实现一半吧哈哈哈) 见企鹅爸妈 带企鹅见爸妈 找到更好的工作(广州) 顺利毕业 论文审稿通过 投一篇会议论文 打一场kaggle比赛 精通PyTorch 学会C++和OpenCV 学习做菜,做点企鹅喜欢吃的 实现财富自由,年底收入达**w...
论文A Graph-Regularized Non-local Hyperspectral Image Denoising Method公式求助 论文A Graph-Regularized Non-local Hyperspectral Image Denoising Method公式求助
论文笔记45:Model-Guided Deep Hyperspectral Image Super-resolution 我们提出了一种基于深度HSI去噪器的迭代高光谱图像超分辨率(HSISR)算法,以利用领域知识可能性和深度图像先验。通过在端到端优化过程中考虑HSI的观测矩阵,我们展示了如何将迭代HSISR算法展开为一个新的模型引导深度卷积网络(MoG-DCN)。通过子网表示观测矩阵还允许展开的深度HSISR网络处理不同的HSI情况,这增强了MoG-DCN的灵活性。
深度学习在高光谱图像去噪中的论文大全-一直更新-有时间训练一下2021和2022的网络 2017:Hyperspectral imagery denoising by deep learning with trainable nonlinearity function2018:Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural networkHSI-DeNet: Hyperspectral image restoration via convol
论文笔记44:ICCV2021-Hyperspectral Image Denoising with Realistic Data-新的数据集和噪声模型 在本文中,我们主要研究如何生成真实的数据集来学习和评估HSI去噪网络。一方面,我们收集一对真实HSI去噪数据集,该数据集由短曝光噪声HSI和相应的长曝光干净HSI组成。另一方面,我们提出了一个精确的HSI噪声模型,该模型能够很好地匹配真实数据的分布,并可用于合成真实数据集。在噪声模型的基础上,提出了一种标定给定高光谱相机噪声参数的方法。大量的实验结果表明,仅使用我们的噪声模型生成的合成数据学习的网络性能与使用成对真实数据学习的网络性能相同。
LaTeX排版小工具 AxMath:公式不会的时候找latex命令mathpix:截图转公式,一个月100次https://www.tablesgenerator.com/:插入表格谷歌学术:插入参考文献snipaste:截图贴桌面ditto:多记忆粘贴Adobe Acrobat DC:编辑与插入pdf图片(矢量图)LaTeX模板:https://www.latexstudio.net/category/tex-academic-journals.html...
CVPR、ICCV、NeurIPS 2021;WACV、AAAI、CVPR2022-去噪系列文章 Noise2Score: Tweedie’s Approach to Self-Supervised Image Denoising without Clean Images Unfolding Taylor’s Approximations for Image Restoration Functional Neural Networks for Parametric Image Restoration Problems A Trainable Spectral-Spatial Sparse Co..
NeurIPS 2021、ICLR 2022 Uncertainty Quantification 论文 Combating Noise: Semi-supervised Learning by Region Uncertainty Quantification Uncertainty Quantification and Deep Ensembles Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification BayesIMP: Uncertainty Quantification for Causa..
论文笔记43:LRNet: Low-Rank Spatial-Spectral Network for Hyperspectral Image Denoising 通过将低秩物理特性集成到深度卷积神经网络中,所提出的LRNe同时具有DCNN的强大特征表示能力和干净HSI的隐式物理约束。首先,构建空间光谱空洞块(SSABs)以利用HSI的空间光谱特征。其次,这些空间光谱特征被转发到一个多空洞块(MAB),以聚合不同感受野中的上下文。第三,将不同层次的上下文特征和空间光谱特征串联起来,然后送入即插即用低秩模块(LRM)进行特征重构。在LRM的帮助下,低秩矩阵重构的工作流程可以以可微的方式简化。最后,利用低秩特征捕获HSI的潜在语义关系,恢复干净的HSI。
李沐动手学深度学习代码问题求解 在欠拟合和过拟合一节中,原封不动把代码搬过来,却报错了import mathimport numpy as npimport torchfrom torch import nnfrom d2l import torch as d2lmax_degree = 20n_train, n_test = 100, 100true_w = np.zeros(max_degree)true_w[0:4] = np.array([5, 1.2, -3.4, 5.6])features = np.r