【bzoj2733】 [HNOI2012] 永无乡

原创 2015年11月20日 23:43:56

sb题
合并:并查集+线段树启发式合并,注意动态开点
查询:直接查对应线段树的K大。
时间复杂度O(qlog2n)

#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a,_=b;i<=_;i++)
#define per(i,a,b) for(int i=a,_=b;i>=_;i--)
#define maxn 200007
#define maxs 3000007

inline int rd() {
    char c = getchar();
    while (!isdigit(c)) c = getchar() ; int x = c - '0';
    while (isdigit(c = getchar())) x = x * 10 + c - '0';
    return x;
}

typedef int arr[maxn];
typedef int seg[maxs];

arr a , h , rt , fa , rk;
seg lc , rc , cnt , pool;
int s_tot , tot , n , m;

inline int newnode() {
    /*if (s_tot) return pool[s_tot --];
    else return ++ tot;*/
    return ++ tot;
}

inline void delnode(int t) {
    cnt[t] = 0 , lc[t] = rc[t] = 0;
    pool[s_tot ++] = t;
}

void _merge(int pr , int&nr) {
    if (!pr) return;
    if (!nr) nr = newnode();
    cnt[nr] += cnt[pr];
    if (cnt[lc[pr]]) _merge(lc[pr] , lc[nr]);
    if (cnt[rc[pr]]) _merge(rc[pr] , rc[nr]);
    delnode(pr);
}

int find(int u) { return u == fa[u] ? u : fa[u] = find(fa[u]); }

inline void merge(int u , int v) {
    u = find(u) , v = find(v);
    if (u == v) return ;
    if (rk[u] > rk[v]) swap(u , v);
    fa[u] = v;
    if (rk[u] == rk[v]) rk[v] ++;
    _merge(rt[u] , rt[v]);
    rt[u] = 0;
}

void update(int&u , int l , int r , int v) {
    if (!u) u = newnode();
    cnt[u] ++;
    if (l == r) return ;
    int m = (l + r) >> 1;
    if (v <= m)
        update(lc[u] , l , m , v);
    else
        update(rc[u] , m + 1 , r , v);
}

void input() {
    n = rd() , m = rd();
    rep (i , 1 , n) a[i] = rd();
    rep (i , 1 , n) h[a[i]] = i;
    rep (i , 1 , n) fa[i] = i;
    rep (i , 1 , n) rk[i] = 1;
    rep (i , 1 , n) update(rt[i] , 1 , n , a[i]);
    rep (i , 1 , m)
        merge(rd() , rd());
}

int kth(int u , int l , int r , int k) {
    int t = 0;
    if (cnt[u] < k) return -1;
    while (l < r) {
        int m = (l + r) >> 1;
        if (cnt[lc[u]] >= k)
            u = lc[u] , r = m;
        else
            k -= cnt[lc[u]] , u = rc[u] , l = m + 1;
    }
    return h[l];
}

void query(int u , int k) {
    u = find(u);
    int t = kth(rt[u] , 1 , n , k);
    printf("%d\n" , t);
}

void solve() {
    char cmd[2];
    rep (q , 1 , rd()) {
        scanf("%s" , cmd);
        int u = rd() , v = rd();
        if (cmd[0] == 'Q')
            query(u , v);
        else
            merge(u , v);
    }
}

int main() {
    #ifndef ONLINE_JUDGE
        freopen("data.txt" , "r" , stdin);
    //  freopen("data.out" , "w" , stdout);
    #endif
    input();
    solve();
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

bzoj2733: [HNOI2012]永无乡

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2733 思路:splay裸题,没啥好说的...用来练练手 #include #includ...

2733: [HNOI2012]永无乡

传说中的启发式合并,就是选出n1logn2和n2logn1中的较小值(不要跟我提常数谢谢) 用平衡树维护一个联通块,我选的SBT(好高端的样子,煞笔树吗?),然后就是俩操作了:合并两棵树,查询一棵树...
  • nlj1999
  • nlj1999
  • 2015年12月17日 11:13
  • 351

2733: [HNOI2012]永无乡

2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 2704  Solved: 1432 [Submit][...

[BZOJ2733][HNOI2012] 永无乡(splay)

题意:给出N个小岛,每个小岛有一个固定的优先级,最开始有M座桥连接其中的某些小岛。给出Q次操作,操作有两种:在两个小岛之间连一座桥,或者询问x所属的连通块内优先级第k的岛屿编号,不存在就输出-1。 ...

【BZOJ2733】[HNOI2012]永无乡【启发式合并】【Splay】

【题目链接】 合并时候启发式合并就可以了。 注意第9个点第99999个合并操作连接了0 0...调了好长时间= = /* Telekinetic Forest Guard */ #include...

bzoj2733 永无乡 线段树合并

这道题是一道经典的平衡树+启发式合并吧。那么考虑用可持久化线段树来写。        对每一个节点保存一棵线段树表示所在块的编号的集合(因此可以一个块值保存一棵树),然后合并的时候就地柜合并左子节点和...

[bzoj2733][HNOI2012]永无乡

题目大意有n个点,初始时有一些边。 每次操作要么加一条边,要么询问一个点所在联通块数值第k大的点。水题联通情况并查集维护,每个连通块再对应一个权值线段树。 合并连通块就是线段树合并。#includ...

【并查集套可持久化线段树】【bzoj 2733】: [HNOI2012]永无乡

2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 1178  Solved: 614 [Submit][S...

[BZOJ 2733][HNOI2012]永无乡

启发式合并

[BZOJ2733][HNOI2012永无乡][线段树合并+并查集]

[BZOJ2733][HNOI2012永无乡]题目大意: 有一些岛屿,一开始由一些无向边连接。后来也有不断的无向边加入,每一个岛屿有个一独一无二的重要度,问任意时刻的与一个岛屿联通的所有岛中重要度...
  • g1n0st
  • g1n0st
  • 2017年02月25日 11:16
  • 259
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【bzoj2733】 [HNOI2012] 永无乡
举报原因:
原因补充:

(最多只允许输入30个字)