Machine Learning week 3 quiz : Logistic Regression

原创 2015年11月17日 19:03:20

Logistic Regression

5 试题

1. 

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction hθ(x) = 0.4. This means (check all that apply):

Our estimate for P(y=0|x;θ) is 0.4.

Our estimate for P(y=0|x;θ) is 0.6.

Our estimate for P(y=1|x;θ) is 0.4.

Our estimate for P(y=1|x;θ) is 0.6.

2. 

Suppose you have the following training set, and fit a logistic regression classifier hθ(x)=g(θ0+θ1x1+θ2x2).

Which of the following are true? Check all that apply.

Adding polynomial features (e.g., instead using hθ(x)=g(θ0+θ1x1+θ2x2+θ3x21+θ4x1x2+θ5x22) ) could increase how well we can fit the training data.

At the optimal value of θ (e.g., found by fminunc), we will have J(θ)0.

Adding polynomial features (e.g., instead using hθ(x)=g(θ0+θ1x1+θ2x2+θ3x21+θ4x1x2+θ5x22) ) would increase J(θ)because we are now summing over more terms.

If we train gradient descent for enough iterations, for some examples x(i) in the training set it is possible to obtain hθ(x(i))>1.

3. 

For logistic regression, the gradient is given by θjJ(θ)=mi=1(hθ(x(i))y(i))x(i)j. Which of these is a correct gradient descent update for logistic regression with a learning rate of α? Check all that apply.

θ:=θα1mmi=1(hθ(x(i))y(i))x(i).

θj:=θjα1mmi=1(θTxy(i))x(i)j (simultaneously update for all j).

θ:=θα1mmi=1(11+eθTx(i)y(i))x(i).

θ:=θα1mmi=1(θTxy(i))x(i).

4. 

Which of the following statements are true? Check all that apply.

Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.

For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).

The cost function J(θ) for logistic regression trained with m1 examples is always greater than or equal to zero.

The sigmoid function g(z)=11+ez is never greater than one (>1).

5. 

Suppose you train a logistic classifier hθ(x)=g(θ0+θ1x1+θ2x2). Suppose θ0=6,θ1=1,θ2=0. Which of the following figures represents the decision boundary found by your classifier?

Figure:

Figure:

Figure:

Figure:


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Coursera Machine Learning 第三周 quiz Logistic Regression

1. Suppose that you have trained a logistic regression classifier, and it outputs on a new exam...

Coursera Machine Learning 第六周 quiz Machine Learning System Design

有用就点个赞吧 1 point 1.  You are working on a spam classification system using regularized logis...

Machine Learning week 6 quiz: Machine Learning System Design

Machine Learning System Design 5 试题 1.  You are working on a spam c...

Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学...

machine learning error correction

1, Suppose you have the following training set, and fit a logistic regression classifier hθ(x)=g(θ0+...

Cousera-stanford-机器学习练习-第二周-Linear Regression with Multiple Variables

Linear Regression with Multiple Variables 1 Suppose m=4 students have taken some class, and the cl...

Coursera Machine Learning 第三周 quiz Regularization

1. You are training a classification model with logistic regression. Which of the following st...

Machine Learning week 3 quiz : Regularization

Regularization 5 试题 1.  You are training a classification model wit...

Machine Learning week 3 quiz : Logistic Regression

Logistic Regression 5 试题 1.  Suppose that you have trained a logistic reg...

Coursera Machine Learning Week3 学习笔记

五、逻辑回归(Logistic Regression)在分类问题中,我们要预测变量的y是离散的值,所有我们将使用一种叫逻辑回归(Logistic Regression)算法。5.1 分类和表示(Cla...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Machine Learning week 3 quiz : Logistic Regression
举报原因:
原因补充:

(最多只允许输入30个字)