关闭

Machine Learning week 3 quiz : Logistic Regression

标签: Machine LearningquizLogistic Regressioncoursera
18769人阅读 评论(1) 收藏 举报
分类:

Logistic Regression

5 试题

1. 

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction hθ(x) = 0.4. This means (check all that apply):

Our estimate for P(y=0|x;θ) is 0.4.

Our estimate for P(y=0|x;θ) is 0.6.

Our estimate for P(y=1|x;θ) is 0.4.

Our estimate for P(y=1|x;θ) is 0.6.

2. 

Suppose you have the following training set, and fit a logistic regression classifier hθ(x)=g(θ0+θ1x1+θ2x2).

Which of the following are true? Check all that apply.

Adding polynomial features (e.g., instead using hθ(x)=g(θ0+θ1x1+θ2x2+θ3x21+θ4x1x2+θ5x22) ) could increase how well we can fit the training data.

At the optimal value of θ (e.g., found by fminunc), we will have J(θ)0.

Adding polynomial features (e.g., instead using hθ(x)=g(θ0+θ1x1+θ2x2+θ3x21+θ4x1x2+θ5x22) ) would increase J(θ)because we are now summing over more terms.

If we train gradient descent for enough iterations, for some examples x(i) in the training set it is possible to obtain hθ(x(i))>1.

3. 

For logistic regression, the gradient is given by θjJ(θ)=mi=1(hθ(x(i))y(i))x(i)j. Which of these is a correct gradient descent update for logistic regression with a learning rate of α? Check all that apply.

θ:=θα1mmi=1(hθ(x(i))y(i))x(i).

θj:=θjα1mmi=1(θTxy(i))x(i)j (simultaneously update for all j).

θ:=θα1mmi=1(11+eθTx(i)y(i))x(i).

θ:=θα1mmi=1(θTxy(i))x(i).

4. 

Which of the following statements are true? Check all that apply.

Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.

For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).

The cost function J(θ) for logistic regression trained with m1 examples is always greater than or equal to zero.

The sigmoid function g(z)=11+ez is never greater than one (>1).

5. 

Suppose you train a logistic classifier hθ(x)=g(θ0+θ1x1+θ2x2). Suppose θ0=6,θ1=1,θ2=0. Which of the following figures represents the decision boundary found by your classifier?

Figure:

Figure:

Figure:

Figure:


0
0
查看评论

Coursera Machine Learning 第三周 quiz Logistic Regression

1. Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction hθ(x) = 0...
  • mupengfei6688
  • mupengfei6688
  • 2016-11-10 15:26
  • 8706

Machine Learning week 3 quiz : Logistic Regression

Logistic Regression 5 试题 1.  Suppose that you have trained a logistic regression classifier, and it outputs on a ...
  • anntang18
  • anntang18
  • 2016-09-30 07:36
  • 680

Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检...
  • abcjennifer
  • abcjennifer
  • 2012-07-07 20:45
  • 171413

Machine Learning week 7 quiz: Support Vector Machines

Support Vector Machines 5 试题 1.  Suppose you have trained an SVM classifier with a Gaussian kernel, and it ...
  • GarfieldEr007
  • GarfieldEr007
  • 2015-11-26 15:25
  • 11009

machine learning error correction

1, Suppose you have the following training set, and fit a logistic regression classifier hθ(x)=g(θ0+θ1x1+θ2x2) Which of the following...
  • huazhenrea
  • huazhenrea
  • 2016-09-17 23:50
  • 4048

机器学习测试Week3_1Logistic Regression

Week3_1Logistic Regression 第 1 题 Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction hθ...
  • wangcong02345
  • wangcong02345
  • 2018-01-10 20:37
  • 74

Stanford机器学习---第3讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检...
  • hellotruth
  • hellotruth
  • 2014-07-20 19:24
  • 1346

Machine Learning by Andrew Ng-----note

The cost function J(θ) is guaranteed to be convex for logistic regression. Adding polynomial features (e.g., instead using hθ(x)=g(θ0+θ1x1+θ2x2...
  • northeastsqure
  • northeastsqure
  • 2015-02-21 11:26
  • 1041

【学习笔记2】Logistic Regression

Logistic RegressionLogistic Regression即逻辑回归,又称作Logistic回归分析,是要预测的变量为有限个离散量(比如2个值)的回归分析问题,可以理解为对样本进行分类的学习方法。 与Linear Regression相似,我们也通过定义Cost Function...
  • xkbb3144
  • xkbb3144
  • 2015-08-27 11:46
  • 165

Logistic Regression

声明:本博客内容参考了网上的代码,若有处理的不当的地方请指正! 1.problem:     In this part of the exercise, you will build a logistic regression model to predict whether...
  • ZHE123ZHE123ZHE123
  • ZHE123ZHE123ZHE123
  • 2016-06-05 09:41
  • 920
    个人资料
    • 访问:5732049次
    • 积分:65464
    • 等级:
    • 排名:第41名
    • 原创:427篇
    • 转载:3869篇
    • 译文:0篇
    • 评论:344条
    最新评论