线性代数
GarfieldEr007
这个作者很懒,什么都没留下…
展开
-
线性代数:第一章 行列式(1)n阶行列式 行列式的性质
第一节 n阶行列式一.数学概念1. 逆序数对于n个不同的元素,先规定各元素之间有一个标准次序(例如n个不同的自然数,可规定由小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说有1个逆序。一个排列中所有逆序的总数叫做这个排列的逆序数。2. 奇排列与偶排列逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列。3. 对换在转载 2016-03-03 14:29:11 · 12268 阅读 · 1 评论 -
理解矩阵乘法
大多数人在高中,或者大学低年级,都上过一门课《线性代数》。这门课其实是教矩阵。刚学的时候,还蛮简单的,矩阵加法就是相同位置的数字加一下。矩阵减法也类似。矩阵乘以一个常数,就是所有位置都乘以这个数。但是,等到矩阵乘以矩阵的时候,一切就不一样了。这个结果是怎么算出来的?教科书告诉你,计算规则是,第一个矩阵第一行的每个数字(转载 2016-04-03 14:10:18 · 1187 阅读 · 0 评论 -
线性代数:第五章 相似矩阵及二次型(1)向量的内积 方阵的特征值与特征向量 相似矩阵
第一节 向量的内积一.数学概念1. 内积:设有n维向量 令 ,则称[x,y]为向量x与y的内积。2. 范数:称 为向量x的范数(或长度)。3. 单位向量:称 时的向量x为单位向量。4. 当 , 时,称 为向量x与y的夹角。5. 正交向量组:指一组两两正交的单位向量。6. 标准正交基:设转载 2016-03-04 12:27:16 · 6592 阅读 · 0 评论 -
线性代数:第五章 相似矩阵及二次型(2)二次型及其标准型 配平方法 合同变换法 正定二次型
第四节 二次型及其标准形一.数学概念1. 二次型 称含有n个变量 的二次齐次函数为二次型。2. 二次型的矩阵形式3. 二次型的秩f的秩=R(A).4. 二次型的标准形称只含有平方项的二次型 为二次型的标准形(或法式)。二.原理,公式和法则1. 设可逆的线性变换x=Cy,将f化成标准形,即 其实质将对称矩阵A化成对角阵L。2. 任给可转载 2016-03-04 12:27:13 · 12910 阅读 · 1 评论 -
线性代数:第四章 向量组的线性相关性(2)向量空间 线性方程组解的结构
第三节 向量空间一.数字概念定义3.1 设V是n维向量集合,且非空,若(i) 则, ;(ii) 则 。则称V是一个向量空间。定义3.2 设 是两个向量空间,若 ,则称 的子空间。定义3.3 设V为向量空间,如果r个向量 ,且满足( i ) 线性无关;(ii) V中的任一向量都可由 线性表示,则称向量组 是向量空间V的一个基,r称为向量转载 2016-03-03 14:40:31 · 5992 阅读 · 0 评论 -
线性代数:第四章 向量组的线性相关性(1)向量组的线性相关性 向量组的秩
第一节 向量组的线性相关性 一.数学概念定义1.1 n个有次序的数 ,所组成的数组称为n维向量,这n个数称为该向量的n个分量,第i个数 称为第i个分量。定义1. 2 给定向量组A: ,对于任何一组实数 ,向量 称为向量组A的一个线性组合, 称为这个线性组合的系数。定义3 给定向量组A: 和向量β,若存在一组数 ,使转载 2016-03-03 14:39:01 · 18479 阅读 · 0 评论 -
线性代数:第三章 矩阵的初等变换与线性方程组(2)线性方程组的解 初等方阵
第三节 线性方程组的解一. 数学概念根据矩阵的乘法,可以将线性方程组写成矩阵形式。1. n元齐次线性方程组 ;2. n元非齐次线性方程组 ;3. 称A为方程组的系数矩阵,B=(A,b)为非齐次线性方程组的增广矩阵。二.原理、公式和法则定理3.1 n元齐次线性方程组 有非零解的充分必要条件的系数矩阵A的秩R(A)n。定理3.2 n元非齐次线性方程组 有转载 2016-03-03 14:37:03 · 8086 阅读 · 0 评论 -
线性代数:第三章 矩阵的初等变换与线性方程组(1)矩阵的初等变换 矩阵的秩
第一节 矩阵的初等变换一. 数学概念等价关系具有的性质:(i) 反身性 A~A;(ii) 对称性 若A~B,则B~A;(iii) 传递性 若A~B, B~C,则A~C;二. 重点,难点分析本节的重点是用矩阵的初等变换将矩阵化为行(列)阶梯形矩阵、最简型矩阵和标准形矩阵。行(列)阶梯形矩阵对于我们下节学习矩阵的秩是至关重要的,最简形矩阵对于今后学习方程组求解是非转载 2016-03-03 14:35:24 · 5594 阅读 · 0 评论 -
线性代数:第二章 矩阵及其运算:逆矩阵、分块矩阵
第一节 矩阵及其运算一.数学概念定义1.1 由 个数 排成m行n列的数表称为m行n列的矩阵,简称 矩阵,记作二.原理,公式和法则1.矩阵的加法(1) 公式(2) 运算律2.数乘矩阵(1) 公式(2) 运算律3.矩阵与矩阵相乘(1) 设 ,则 其中 ,且 。(2) 运算符(假设运算都是可行的):(转载 2016-03-03 14:33:05 · 13423 阅读 · 0 评论 -
线性代数:第一章 行列式(2)行列式按行(列)展开 克拉默法则
第三节 行列式按行(列)展开一.数学概念余子式和代数余子式在n阶行列式中,把元素 所在第i行和第j列划去后,留下来的n-1阶行列式叫做元素 的余子式,记作 ,记 , 叫做元素 的代数余子式。二.原理,公式引理 一个n阶行列式,如果其中第i行所有元素除 外都为零,那么这行列式等于 与它的代数余子式的乘积。定理3.1 行列式等于它的任一行(列)的各元转载 2016-03-03 14:31:01 · 10269 阅读 · 0 评论 -
如何理解矩阵特征值?
李浩 ,FPA蓝色 / EE。知乎用户、Tavion Fu、雄哼哼 等人赞同补充:答主现在用到的多数是对称矩阵或酉矩阵的情况,有思维定势了,写了半天才发现主要讲的是对称矩阵,这答案就当科普用了。特征值在很多领域应该都有自己的用途,它的物理意义到了本科高年级或者研究生阶段涉及到具体问题的时候就容易理解了,刚学线性代数的话,确实抽象。——————————————————转载 2016-05-19 12:31:15 · 18766 阅读 · 0 评论