# Regularization

5 试题

1.

You are training a classification model with logistic

regression. Which of the following statements are true? Check

all that apply.

Adding many new features to the model helps prevent overfitting on the training set.

Introducing regularization to the model always results in equal or better performance on the training set.

Adding a new feature to the model always results in equal or better performance on the training set.

Introducing regularization to the model always results in equal or better performance on examples not in the training set.

2.

Suppose you ran logistic regression twice, once with λ=0, and once with λ=1. One of the times, you got

parameters θ=[23.437.9], and the other time you got

θ=[1.030.28]. However, you forgot which value of

λ corresponds to which value of θ. Which one do you

think corresponds to λ=1?

θ=[1.030.28]

θ=[23.437.9]

3.

Which of the following statements about regularization are

true? Check all that apply.

Because logistic regression outputs values 0hθ(x)1, it's range of output values can only be "shrunk" slightly by regularization anyway, so regularization is generally not helpful for it.

Using a very large value of λ cannot hurt the performance of your hypothesis; the only reason we do not set λ to be too large is to avoid numerical problems.

Using too large a value of λ can cause your hypothesis to overfit the data; this can be avoided by reducing λ.

Consider a classification problem. Adding regularization may cause your classifier to incorrectly classify some training examples (which it had correctly classified when not using regularization, i.e. when λ=0).

4.

In which one of the following figures do you think the hypothesis has overfit the training set?

Figure:

Figure:

Figure:

Figure:

5.

In which one of the following figures do you think the hypothesis has underfit the training set?

Figure:

Figure:

Figure:

Figure:

• 本文已收录于以下专栏：

## Coursera Machine Learning 第三周 quiz Regularization

1. You are training a classification model with logistic regression. Which of the following st...
• mupengfei6688
• 2016年11月10日 16:11
• 10620

## Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

• abcjennifer
• 2012年07月07日 20:45
• 171552

## 数据挖掘错题集

1.    Some of the problems below are best addressed using a supervised learning algorithm, and the o...
• ChallenChenZhiPeng
• 2012年09月02日 10:08
• 29061

## 吴恩达机器学习——我的错题集（持续更新）

• Alinawly
• 2017年10月25日 14:04
• 367

## Coursera Machine Learning 第三周 quiz Logistic Regression

1. Suppose that you have trained a logistic regression classifier, and it outputs on a new exam...
• mupengfei6688
• 2016年11月10日 15:26
• 8817

## 机器学习测试Week3_2Regularization

Week3_2Regularization 第 1 题 You are training a classification model with logistic regression. ...
• wangcong02345
• 2018年01月10日 20:39
• 99

## 机器学习测试Week3_3Program_Logistic Regression编程解析

w3_3Program_Logistic Regression编程解析 1. Logistic Regression 1.1 plotData 把数据可视化, 在plotData.m中...
• wangcong02345
• 2018年01月10日 20:39
• 38

## Coursera机器学习第8周作业

1.  1、Consider the following 2D dataset: Which of the following figures correspond to possible v...
• liuyanlin610
• 2016年04月26日 09:52
• 7518

## Coursera Machine Learning 第十周 quiz Large Scale Machine Learning

1 point 1.  Suppose you are training a logistic regression classifier using stochastic ...
• mupengfei6688
• 2016年11月13日 21:23
• 8553

## machine learning error correction

1, Suppose you have the following training set, and fit a logistic regression classifier hθ(x)=g(θ0+...
• huazhenrea
• 2016年09月17日 23:50
• 4065

举报原因： 您举报文章：Machine Learning week 3 quiz : Regularization 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)