Machine Learning week 3 quiz : Regularization

原创 2015年11月17日 20:50:28

Regularization

5 试题

1. 

You are training a classification model with logistic

regression. Which of the following statements are true? Check

all that apply.

Adding many new features to the model helps prevent overfitting on the training set.

Introducing regularization to the model always results in equal or better performance on the training set.

Adding a new feature to the model always results in equal or better performance on the training set.

Introducing regularization to the model always results in equal or better performance on examples not in the training set.

2. 

Suppose you ran logistic regression twice, once with λ=0, and once with λ=1. One of the times, you got

parameters θ=[23.437.9], and the other time you got

θ=[1.030.28]. However, you forgot which value of

λ corresponds to which value of θ. Which one do you

think corresponds to λ=1?

θ=[1.030.28]

θ=[23.437.9]

3. 

Which of the following statements about regularization are

true? Check all that apply.

Because logistic regression outputs values 0hθ(x)1, it's range of output values can only be "shrunk" slightly by regularization anyway, so regularization is generally not helpful for it.

Using a very large value of λ cannot hurt the performance of your hypothesis; the only reason we do not set λ to be too large is to avoid numerical problems.

Using too large a value of λ can cause your hypothesis to overfit the data; this can be avoided by reducing λ.

Consider a classification problem. Adding regularization may cause your classifier to incorrectly classify some training examples (which it had correctly classified when not using regularization, i.e. when λ=0).

4. 

In which one of the following figures do you think the hypothesis has overfit the training set?

Figure:

Figure:

Figure:

Figure:

5. 

In which one of the following figures do you think the hypothesis has underfit the training set?

Figure:

Figure:

Figure:

Figure:


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Coursera Machine Learning 第三周 quiz Regularization

1. You are training a classification model with logistic regression. Which of the following st...

Machine Learning week 3 quiz : Logistic Regression

Logistic Regression 5 试题 1.  Suppose that you have trained a logist...

Coursera Machine Learning 第三周 quiz Logistic Regression

1. Suppose that you have trained a logistic regression classifier, and it outputs on a new exam...

Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学...

数据挖掘错题集

1.    Some of the problems below are best addressed using a supervised learning algorithm, and the o...

Coursera Machine Learning 第五周 quiz Neural Networks: Learning

1.  You are training a three layer neural network and would like to use backpropagation to compu...

Coursera机器学习 week3 assignment

plotData.m: pos = find(y==1); neg = find(y==0); plot(X(pos, 1), X(pos, 2), 'k+', 'LineWidth', 2, '...

[Coursera][Stanford] Machine Learning Week 3

1. Logistic Regression 逻辑回归

Coursera Machine Learning Week3 学习笔记

五、逻辑回归(Logistic Regression)在分类问题中,我们要预测变量的y是离散的值,所有我们将使用一种叫逻辑回归(Logistic Regression)算法。5.1 分类和表示(Cla...

Coursera Machine learning

机器学习
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Machine Learning week 3 quiz : Regularization
举报原因:
原因补充:

(最多只允许输入30个字)