树状数组

树状数组简介:

     树状数组是一种区间求和查询和元素修改的时间复杂度都在logN的线性的数据结构。它支持sigma(a[1], a[2], ... a[i]) 时间的复杂度为logN的查询,和对a[i]时间复杂度为logN的修改。


来观察这个图:

  令这棵树的结点编号为C1,C2...Cn。令每个结点的值为这棵树的值的总和,那么容易发现:

  C1 = A1

  C2 = A1 + A2

  C3 = A3

  C4 = A1 + A2 + A3 + A4

  C5 = A5

  C6 = A5 + A6

  C7 = A7

  C8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8

  ...

  C16 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + A12 + A13 + A14 + A15 + A16

  这里有一个有趣的性质:

  设节点编号为x,那么这个节点管辖的区间为2^k(其中k为x二进制末尾0的个数)个元素。因为这个区间最后一个元素必然为Ax,

  所以很明显:Cn = A(n – 2^k + 1) + ... + An

  算这个2^k有一个快捷的办法,定义一个函数如下即可:

  int lowbit(int x){

  return x&(x^(x–1));

  }

  当想要查询一个SUM(n)(求a[n]的和),可以依据如下算法即可:

  step1: 令sum = 0,转第二步;

  step2: 假如n <= 0,算法结束,返回sum值,否则sum = sum + Cn,转第三步;

  step3: 令n = n – lowbit(n),转第二步。

  可以看出,这个算法就是将这一个个区间的和全部加起来,为什么是效率是log(n)的呢?以下给出证明:

  n = n – lowbit(n)这一步实际上等价于将n的二进制的最后一个1减去。而n的二进制里最多有log(n)个1,所以查询效率是log(n)的。

  那么修改呢,修改一个节点,必须修改其所有祖先,最坏情况下为修改第一个元素,最多有log(n)的祖先。

  所以修改算法如下(给某个结点i加上x):

  step1: 当i > n时,算法结束,否则转第二步;

  step2: Ci = Ci + x, i = i + lowbit(i)转第一步。

  i = i +lowbit(i)这个过程实际上也只是一个把末尾1补为0的过程


本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/ACb0y/archive/2010/09/09/5873595.aspx

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值