EventBus的使用,数据传递

通常情况下安卓下数据的传递有下面几种方法:

1.通过intent传递,包括显式意图和隐式意图,广播(Broadcast)和服务都能通过Intent传递

    传递的数据类型包括8大基本数据类型    实现Parcelable或Serializable接口的类型   以及集合数组类型

2.静态变量传递  在工具类下 声明一个Object类型的静态变量   在A中将要传递的值,在B中通过这个静态变量取出来

3.通过handle在不同的线程中传递Object类型的数据

4.通过构造方法传递Object类型的数据

5.通过SharedPreferences传递八大基本数据类型

6.通过ContentProvider在进程间共享数据

7.通过aidl在进程进程传递数据

8.通过流(本地文件)传递八大基本数据类型和实现Serializable接口的数据类型

9.通过基类中的属性或者方法

    属性: 基类公有属性  在某个子类中赋值   其他子类中都能使用

    方法: 子类调用父类的某个方法给父类某个属性赋值  另外一个子类通过父类的另一个公有方法获取这个值(这个方法把值返回)

10.通过上下文对象Context传递

     先说, activity和adapter或者activity和fragment
           1.将这个Context强转成MainActivity对象
            他们之间数据传递的桥梁是context这个上下文对象,这个context对象就是我们的Activity,
            那么这个context就是MainActivity的实例化对象,我们可以将这个Context强转成MainActivity对象,再和MainActivity进行通信
            2.如果是adapter,我们就在MainActivity中添加一个带参数的方法,在adapter通过刚刚强转的MainActivity对象,调刚刚创建的这个方法,参数就是我们要传递的数据
            如果是fragment,我们通过上边的方法可以与MainActivity传递数据
     再说, 在fragment间传递数据

          1.在MainActivity中创建一个方法能够将所有的Fragment返回(一般fragment放在一个集合中)

             在 Fragment2(接受数据)中创建一个带参数(要传递的数据)的方法

         2.传递数据:在某个fragment中1(传递数据)获取到强转的MainActivity对象,根据这个对象获取的需要传递数据的Fragment2的实例化对象,再根据Fragment2的实例化对象,调那个带参数的方法,把数据传递过去


11.通过EventBus传递Object类型的数据

简单地介绍下EventBus的使用

EventBus在在使用的时候有点像广播,使用步骤如下:

1.在接收信息的类中需要注册EventBus在不需要的时候将EventBus注销掉.

2.发送消息的地方传递两个参数,第一个参数是Object,第二个参数是一个任意类型的标记

3.在接受数据的地方创建一个方法,并加上注解,注解的标记和上边的标记相同   这个方法的参数类型也必须和第2步中第一个参数的类型相同

EventBus与广播相比,优点在于:EventBus在基类中注册,那么所有继承基类的子类相当于都注册了EventBus,举个例子:我在BaseActivity的onCreat中

注册了EventBus,那么只要继承的EventBus的Activity都注册了EventBus,这一点我感觉非常方便,还有一点发送数据的时候不需要上下文对象(Context)


下边看代码:

1.在MainActivity中注册EventBus

public class MainActivity extends Activity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        EventBus.getDefault().register(this);//注册事件
        findViewById(R.id.button).setOnClickListener(new OnClickListener() {

            @Override
            public void onClick(View v) {
                startActivity(new Intent(MainActivity.this,
                        SecondActivity.class));
            }
        });
    }

    @Subscriber(tag = "zheng")      //标记和发送消息的标记一样的,包括类型和值都必须一样
    public void onRecieve(String result) {//这个参数是传递过来的数据   类型亦必须一样
        Toast.makeText(this, result, Toast.LENGTH_SHORT).show();
    }

    @Override
    protected void onDestroy() {
        super.onDestroy();
        EventBus.getDefault().unregister(this);//注销事件
    }
}

2.在SecondActivity中发消息

public class SecondActivity extends Activity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_second);
        findViewById(R.id.button).setOnClickListener(new OnClickListener() {

            @Override
            public void onClick(View v) {// 发送消息
                EventBus.getDefault().post("zhengjiao", "zheng");//第一个是要传递的数据   第二个参数是标记
            }
        });
    }
}

注意

1.常见问题:消息接受不到,一般情况下 必须在发送消息之前先注册    注册的话就必须先开启这个界面,才能执行到onCreate中的方法,这样才相当于注册了

2.点击这里下载源码



### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值