自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1422)
  • 收藏
  • 关注

原创 来了来了!爆火AI工具Dify怎么玩?这绝对是全网最详细的教程(下)

今天继续给大家详细介绍下Dify如何使用。先回顾上一篇都讲了什么:1、Dify的安装和启动2、使用Dify前的一些必要配置。3、Dify核心功能介绍。4、知识库实战1:如何在Dify中创建知识库5、知识库实战2:如何在Dify中外连知识库RAGFlow6、智能体实战1:最简单的聊天模式7、智能体实战2:Agent模式8、智能体实战3:整合MCP下面继续开启智能体的其他实战部分。智能体实战4:文本生成模式。

2025-06-12 13:30:26 278

原创 来了来了!爆火AI工具Dify怎么玩?这绝对是全网最详细的教程(上)

来了来了!爆火AI工具Dify怎么玩?这绝对是全网最详细的教程(上)

2025-06-12 13:25:14 394

原创 开箱即用的基于企业私有知识库的LLM(大语言模型)智能客服机器人问答系统,支持私有化部署

开箱即用的基于企业私有知识库的LLM(大语言模型)智能客服机器人问答系统,支持私有化部署

2025-06-11 10:48:41 820

原创 Git开源:基于大模型的知识库与知识图谱问答系统

结合了大模型 RAG 知识库与知识图谱技术,基于 Llamaindex + VueJS + FastAPI + Neo4j 构建。

2025-06-11 10:46:53 702

原创 Dify+Firecrawl本地部署RAG知识库chatbot

本文用于记录和描述如何在本地通过配置dify+firecral+ollama的方式来实现RAG知识库chatbot。

2025-06-10 10:30:03 634

原创 开源免费!本地部署的AI知识库神器:Langchain-Chatchat快速上手

今天要为大家推荐一款能本地私有化部署的AI知识库与对话工具——Langchain-Chatchat。

2025-06-10 10:23:25 451

原创 《Happy-LLM》完整PDF首发!一周2.3k+star的大模型“顶流教程”

开源仅一周,《Happy-LLM》从零开始的大语言模型原理与实践教程 GitHub star数量已经突破2.3k,成为大模型学习圈的“顶流教程”!

2025-06-09 10:26:37 368

原创 告别 RAG 还太早?听听 Anthropic 怎么说

你有没有向你的RAG系统问过一个具体问题,却得到一个令人沮丧的模糊答案?你并不孤单。以下是一个巧妙的改进方法如何改变游戏规则。

2025-06-09 09:25:30 353

原创 这是我见过最详细的大语言模型书籍!从基础到扩展,超级适合新手入门!

这本书是为想要提升技能并深入了解生成式AI和大语言模型(LLMs)的人准备的全面指南。它介绍了如何通过不同方法提高LLMs的准确性、可靠性和扩展性,使其更好地适应特定需求。

2025-06-08 12:30:00 171

原创 阿里牛逼,又开源两个遥遥领先的模型(向量化、重排),知识库要翻天地覆了

阿里牛逼,又开源两个遥遥领先的模型(向量化、重排),知识库要翻天地覆了

2025-06-08 09:30:00 629

原创 RAG拉满-上下文embedding与大模型cache

RAG拉满-上下文embedding与大模型cache

2025-06-07 10:37:33 548

原创 大话AI模型:无需数学知识,掌握LLM原理

只有认识模型,才能用好模型。我们将直观地了解模型是如何运行的以及它的能力是如何产生的,不需要用到数学知识。涉及的知识:为什么token和汉字不是一一对应、语料的作用、模型训练过程、模型如何运行、模型中的参数是什么、模型为什么几个字几个输出、涌现是什么、模型能力有什么决定、提示语工程、如何选择模型。

2025-06-07 10:36:31 914

原创 RAG 实战指南(五):RAG 信息检索:如何让模型找到‘对的知识’

在RAG系统中,生成效果的好坏,往往不取决于模型本身有多“聪明”,而是它是否能“查对资料”。通俗地说,RAG 的本质是一种“开卷考试”:模型并不靠死记硬背,而是通过查找外部知识库来作答。如果查的资料靠谱、精确、上下文合理,回答自然逻辑清晰、信息详实;反之,如果检索不到关键内容,生成再强的模型也只能“睁眼说瞎话”。

2025-06-06 14:15:00 789

原创 RAG 实战指南(四):RAG-embedding篇

前面我们介绍了RAG系统中的文档解析,RAG 的文档解析:PDF 篇,在解析文档得到数据后,由于数据规模很可能非常庞大,整体存储具有难度,并且在查询的时候可能仅仅和其中的一个或几个段落有关系,所以需要分块技术将解析后的文档内容切分为适当的片段一分钟读懂RAG的切分策略。

2025-06-06 10:45:00 891

原创 还在对着大模型一脸懵?别慌!这份“保姆级”秘籍,带你轻松玩转LLM!

今天小编就给各位带来一剂猛药,不对,是 “入门神器” —— Datawhale 出品的 “llm-universe” 项目! 保证药到病除,啊不,是 学到会用!

2025-06-06 10:20:04 837

原创 6个GitHub爆火的免费大模型教程,助你快速进阶AI编程!

这些项目覆盖从入门到精通的全过程,无论你是零基础小白还是有经验的开发者,都能找到适合自己的学习路径。我们一起来看看这些让开发者疯狂Star的顶级开源项目!

2025-06-06 10:18:32 979

原创 RAG 实战指南(三):一文搞懂RAG的切分策略

本文是RAG 实战指南的第三篇文章,这篇主要带大家搞懂RAG的切分策略,废话不多说,开造!

2025-06-06 09:15:00 571

原创 RAG 实战指南(二):一文搞懂RAG 的文档解析

本文是RAG 实战指南的第二篇文章,这篇主要带大家搞懂RAG 的文档解析,废话不多说,开造!

2025-06-05 10:13:49 971

原创 RAG 实战指南(一):什么是RAG?一文搞懂检索增强生成技术

大家好,我准备开启一个全新的系列,来聊聊——RAG(Retrieval-Augmented Generation)系统的底层设计与工程实现。

2025-06-05 10:00:43 530

原创 GitHub 24.3k Star!微软开源AI智能体保姆课,10天零基础逆袭

作为程序员其实有很多的渠道开源学习, 微软开源的这一款 AI Agents 入门课程对于想学智能体的同学来说一定要去看看。支持 12 种语言。

2025-06-05 09:26:09 1026

原创 Github 50K star,从零开始构建大模型:LLMs-from-scratch(附PDF)

《Build a Large Language Model (From Scratch)》是机器学习和 AI 研究员、畅销书《 Python 机器学习》的作者Sebastian Raschka 所著的一本新书,旨在为读者揭示从零开始构建大型语言模型(LLM)的全过程。

2025-06-04 10:10:42 773

原创 【AI 工程】大模型新书丨AI工程化落地必读书籍,强烈推荐

本文推荐一本关于 AI 工程的书籍《AI Engineering: Building Applications with Foundation Models》,我认为是目前最好的关于基于大模型的 AI 工程的书籍,涵盖适合核心原理、开发流程与策略、数据集处理、提示工程、RAG、微调、智能体等内容,内容覆盖全面,从入门到进阶,很适合 AI 工程的开发者阅读,强烈推荐!

2025-06-04 10:03:50 828

原创 Github 1万Star!浙大Daily实验室《大模型基础》开源教材广受认可!

自开源以来教程已收获了读者的很多建议,作者团队将根据大家的建议进行修改。感谢读者朋友们的宝贵建议!

2025-06-03 14:21:36 980

原创 Llama 4架构解析与本地部署指南:MoE模型在170亿参数下的效率突破

本文将深入解析这些模型的技术原理、架构创新、训练方法、性能基准测试及安全措施。通过多维度技术剖析,我们可以更清晰地理解Meta如何突破计算效率型大语言模型的能力边界。

2025-06-03 14:16:09 942

原创 免费在Colab运行Qwen3-0.6B——轻量高性能实战

Qwen一直在默默地接连推出新模型。每个模型都配备了如此强大的功能和高度量化的规模,让人无法忽视。

2025-06-03 14:14:30 944

原创 如何使用AI大模型赋能传统应用系统

在数字化转型的浪潮下,传统业务流程(如通知公告管理、文档处理等)仍依赖人工操作,面临效率低、成本高、易出错等问题。以企业通知公告为例,从内容撰写、摘要提炼到信息分发,需耗费大量人力与时间,且存在格式不规范、信息遗漏等风险。

2025-05-30 10:28:26 992

原创 基于RAG和MCP技术开发企业级智能体应用

基于RAG和MCP技术开发企业级智能体应用

2025-05-30 10:19:58 731

原创 RAG越来越不准?从Dify和ima知识库看元数据与标签如何让大模型更懂你

你是否有这样的经历:”知识库文档越来越多,知识库问答却越来越不靠谱,RAG检索到的都是一堆不相关的内容。“

2025-05-29 14:03:38 737

原创 deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b有啥区别?

DeepSeek-R1系列提供了多种参数规模的模型(1.5B、7B、8B、14B、32B、70B 和 671B),它们在模型架构、性能表现、资源需求和适用场景上有显著差异。

2025-05-29 14:02:22 946

原创 DeepSeek R1再进化:这次更新让它直接对标Claude 4

说实话,这种"深夜放大招"的操作风格,已经成了DeepSeek的招牌动作了。不过这次更新虽然被官方定义为"小版本试升级"[2][8],但从社区的测试反馈来看,这个"小"更新带来的提升可一点都不小。

2025-05-29 14:01:09 695

原创 10min让你用Dify零代码搭建一个属于你的大模型知识库

为了让大家把所学变成应用,“他”来了,一个零代码经验也可以搭建一个可用的大模型知识库,他来了,注意了,是零代码+可用,零代码+可用,零代码+可用......

2025-05-28 11:25:13 251

原创 5min了解RAG,真的非常非常简单

简而言之,RAG就是和大模型结合在一起,通过先检索(知识库),再生成(结果)的方式来完成内容生成的。

2025-05-28 11:24:07 655

原创 大模型时代开发者要学什么?怎么学?

豆瓣评分9.8,友好程度感动到哭!AI大佬吴恩达强推,独熬夜不如众熬夜,不偷偷啃了!全部书籍免费送!!不仅仅10本,爆款经典之作全包含,嘎嘎冲!!

2025-05-28 11:04:44 338

原创 27.4K Star!这个LLM应用宝库让你秒变AI全栈高手,RAG和AI Agent一网打尽!

想要快速入门LLM应用开发?想要了解最新的RAG和AI Agent技术?这个收获27.4K Star的开源项目集合了当下最热门的LLM应用案例,从简单的PDF对话到复杂的多智能体系统应该有尽有。

2025-05-27 14:51:54 469

原创 微软生成式 AI 学习资源:微软手把手教你构建生成式 AI 应用!

课程内容包括生成式 AI 的方方面面,如提示工程、AI agents、模型微调、文本生成、图片生成、聊天应用、工具调用、RAG 等。

2025-05-27 14:45:13 632

原创 重磅发布 | AI大模型工程化落地必读书籍,强烈推荐!

  本文推荐一本关于 AI 工程的书籍《AI Engineering: Building Applications with Foundation Models》,我认为是目前最好的关于基于大模型的 AI 工程的书籍,涵盖适合核心原理、开发流程与策略、数据集处理、提示工程、RAG、微调、智能体等内容,内容覆盖全面,从入门到进阶,很适合 AI 工程的开发者阅读,强烈推荐!

2025-05-27 14:22:48 797

原创 DeepSeek + AnythingLLM 简单三步搭建个人知识库,现在的我强的可怕(附教程)

AnythingLLM 功能强大,但 Dify 和 Cherry Studio 对中国用户更友好,这里我用 AnythingLLM 为例说下如何搭建个人知识库。

2025-05-26 09:54:05 1529

原创 三大智能体开发平台详细对比:FastGPT、Dify和Coze(附教程)

本文将从功能实现、用户体验、适用场景、以及性能表现等多个维度,深入分析这三款 RAG 工具的核心优势与潜在不足,为有需求的读者提供客观的参考建议,帮助大家选择最适合自己业务需求的解决方案。

2025-05-26 09:52:51 809

原创 大模型应用开发之业务架构和技术架构(从AI Embedded 到 Copilot,再到Agent)

本文我们重点讲的就是伴随着大模型的广泛应用,这些概念是在什么体系和场景下衍生的;换句话说,基于LLM,目前大家在做的应用,他主流的业务架构和技术架构都是什么样子的,我们在了解之后,可以根据依据我们现实的业务需求,来选择自己的技术路线。

2025-05-26 09:51:07 802

原创 10分钟构建基于 Dify 的智能文章仿写工作流:配置指南,效率飙升300%!

该工作流旨在接收一篇原始文章作为输入,通过预设的提示词引导大型语言模型对其进行内容和表达上的改写,最终输出一篇保留核心观点但措辞、风格有所不同的新文章。

2025-05-25 16:45:00 840

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除