【数学之美系列三】隐含马尔可夫模型在语言处理中的应用

原创 2007年10月05日 03:09:00
2006年4月17日 上午 08:01:00
发表者:吴军,Google 研究员

前言:隐含马尔可夫模型是一个数学模型,到目前为之,它一直被认为是实现快速精确的语音识别系统的最成功的方法。复杂的语音识别问题通过隐含马尔可夫模型能非常简单地被表述、解决,让我不由由衷地感叹数学模型之妙。

自然语言是人类交流信息的工具。很多自然语言处理问题都可以等同于通信系统中的解码问题 -- 一个人根据接收到的信息,去猜测发话人要表达的意思。这其 实就象通信中,我们根据接收端收到的信号去分析、理解、还原发送端传送过来的信息。以下该图就表示了一个典型的通信系统:
其中 s1,s2,s3...表示信息源发出的信号。o1, o2, o3 ... 是接受器接收到的信号。通信中的解码就是根据接收到的信号 o1, o2, o3 ...还原出发送的信号 s1,s2,s3...。

其实我们平时在说话时,脑子就是一个信息源。我们的喉咙(声带),空气,就是如电线和光缆般的信道。听众耳朵的就是接收端,而听到的声音就是传送过来的信 号。根据声学信号来推测说话者的意思,就是语音识别。这样说来,如果接收端是一台计算机而不是人的话,那么计算机要做的就是语音的自动识别。同样,在计算 机中,如果我们要根据接收到的英语信息,推测说话者的汉语意思,就是机器翻译;如果我们要根据带有拼写错误的语句推测说话者想表达的正确意思,那就是自动 纠错。

那么怎么根据接收到的信息来推测说话者想表达的意思呢?我们可以利用叫做“隐含马尔可夫模型” (Hidden Markov Model)来解决这些问 题。以语音识别为例,当我们观测到语音信号 o1,o2,o3 时,我们要根据这组信号推测出发送的句子 s1,s2,s3。显然,我们应该在所有可能的 句子中找最有可能性的一个。用数学语言来描述,就是在已知 o1,o2,o3,...的情况下,求使得条件概率
P (s1,s2,s3,...|o1,o2,o3....) 达到最大值的那个句子 s1,s2,s3,...

当然,上面的概率不容易直接求出,于是我们可以间接地计算它。利用贝叶斯公式并且省掉一个常数项,可以把上述公式等价变换成

P(o1,o2,o3,...|s1,s2,s3....) * P(s1,s2,s3,...)
其中
P(o1,o2,o3,...|s1,s2,s3....) 表示某句话 s1,s2,s3...被读成 o1,o2,o3,...的可能性, 而
P(s1,s2,s3,...) 表示字串 s1,s2,s3,...本身能够成为一个合乎情理的句子的可能性,所以这个公式的意义是用发送信号为 s1,s2,s3...这个数列的可能性乘以 s1,s2,s3...本身可以一个句子的可能性,得出概率。

(读者读到这里也许会问,你现在是不是把问题变得更复杂了,因为公式越写越长了。别着急,我们现在就来简化这个问题。)我们在这里做两个假设:

第一,s1,s2,s3,... 是一个马尔可夫链,也就是说,si 只由 si-1 决定 (详见系列一);
第二, 第 i 时刻的接收信号 oi 只由发送信号 si 决定(又称为独立输出假设, 即 P(o1,o2,o3,...|s1,s2,s3....) = P(o1|s1) * P(o2|s2)*P(o3|s3)...。
那么我们就可以很容易利用算法 Viterbi 找出上面式子的最大值,进而找出要识别的句子 s1,s2,s3,...。

满足上述两个假设的模型就叫隐含马尔可夫模型。我们之所以用“隐含”这个词,是因为状态 s1,s2,s3,...是无法直接观测到的。

隐含马尔可夫模型的应用远不只在语音识别中。在上面的公式中,如果我们把 s1,s2,s3,...当成中文,把 o1,o2,o3,...当成对应的英 文,那么我们就能利用这个模型解决机器翻译问题; 如果我们把 o1,o2,o3,...当成扫描文字得到的图像特征,就能利用这个模型解决印刷体和手写 体的识别。

P (o1,o2,o3,...|s1,s2,s3....) 根据应用的不同而又不同的名称,在语音识别中它被称为“声学模型”  (Acoustic Model), 在机器翻译中是“翻译模型” (Translation Model) 而在拼写校正中是“纠错模型”  (Correction Model)。 而P (s1,s2,s3,...) 就是我们在系列一中提到的语言模型。

在利用隐含马尔可夫模型解决语言处理问题前,先要进行模型的训练。 常用的训练方法由伯姆(Baum)在60年代提出的,并以他的名字命名。隐含马尔可夫 模型在处理语言问题早期的成功应用是语音识别。七十年代,当时 IBM 的 Fred Jelinek (贾里尼克) 和卡内基·梅隆大学的  Jim and Janet Baker (贝克夫妇,李开复的师兄师姐) 分别独立地提出用隐含马尔可夫模型来识别语音,语音识别的错误率相比人工智 能和模式匹配等方法降低了三倍 (从 30% 到 10%)。 八十年代李开复博士坚持采用隐含马尔可夫模型的框架, 成功地开发了世界上第一个大词汇量 连续语音识别系统 Sphinx。

我最早接触到隐含马尔可夫模型是几乎二十年前的事。那时在《随机过程》(清华“著名”的一门课)里学到这个模型,但当时实在想不出它有什么实际用途。几年 后,我在清华跟随王作英教授学习、研究语音识别时,他给了我几十篇文献。我印象最深的就是贾里尼克和李开复的文章,它们的核心思想就是隐含马尔可夫模型。 复杂的语音识别问题居然能如此简单地被表述、解决,我由衷地感叹数学模型之妙。

http://googlechinablog.com/2006/04/blog-post_17.html  

数学之美笔录(3):隐含马尔可夫模型(详解)

**隐含马尔可夫模型**HMM(Hidden Markov Model)是一个数学模型,到目前为之,它一直被认为是实现快速精确语音识别系统的最为快速有效的方法。复杂的语音识别问题通过隐含马尔可夫模型能...
  • kzq_qmi
  • kzq_qmi
  • 2015年07月05日 21:15
  • 2062

读书笔记 --《数学之美》_隐马尔可夫模型

《数学之美⋅第二版》第五章1、通信模型 上图表示了一个典型的通信系统,它包括雅各布森(Roman Jakobson)提出的通信的六个要素(发送者(信息源),信道,接收者,信息,上下文和编码)。 ...
  • redaihanyu
  • redaihanyu
  • 2015年12月22日 21:49
  • 637

数学之美系列之七:信息论在信息处理中的应用

 我们已经介绍了信息熵,它是信息论的基础,我们这次谈谈信息论在自然语言处理中的应用。先看看信息熵和语言模型的关系。我们在系列一中谈到语言模型时,没有讲如何定量地衡量一个语言模型的好坏,当然,读者会很自...
  • zhz_2V
  • zhz_2V
  • 2007年07月03日 12:35
  • 644

数学之美系列完整版(最新全集列表)

数学之美系列完整版(最新全集列表)作者:吴军, Google 研究员 来源:Google黑板报 数学之美 一 统计语言模型 数学之美 二 谈谈中文分词 数学之美 三 隐含马尔可夫模型...
  • happylife1527
  • happylife1527
  • 2012年10月23日 09:15
  • 909

数学之美(系列三) 之 隐含马尔可夫模型在语言处理中的应用

数学之美 系列三 -- 隐含马尔可夫模型在语言处理中的应用2006年4月17日 上午 08:01:00uT("time114523190259377514");发表者:吴军,Google 研究员前言:...
  • pengpengfly
  • pengpengfly
  • 2008年09月23日 21:03
  • 378

数学之美 第3章 统计语言模型

数学之美 第3章 统计语言模型 回顾一下: 前面两章都是基础知识,告诉我们自然语言的起源基础,和一些发展过程遇到的问题,第二章告诉我们规则:理解自然语言(即分析语句和获取语义)这种处理方法不可能实...
  • lch614730
  • lch614730
  • 2014年03月18日 21:41
  • 1241

数学之美系列三:隐含马尔可夫模型在语言处理中的应用

前言:隐含马尔可夫模型是一个数学模型,到目前为之,它一直被认为是实现快速精确的语音识别系统的最成功的方法。复杂的语音识别问题通过隐含马尔可夫模型能非常简单地被表述、解决,让我不由由衷地感叹数学模型之妙...
  • RFC2008
  • RFC2008
  • 2012年05月01日 15:48
  • 282

数学之美 系列三 -- 隐含马尔可夫模型在语言处理中的应用(转)

  数学之美 系列三 -- 隐含马尔可夫模型在语言处理中的应用发表者:吴军,Google 研究员前言:隐含马尔可夫模型是一个数学模型,到目前为之,它一直被认为是实现快速精确的语音识别系统的最成功的方法...
  • ensoo
  • ensoo
  • 2008年10月28日 08:52
  • 555

数学之美 系列三 -- 隐含马尔可夫模型在语言处理中的应用

2006年4月17日 上午 08:01:00发表者:吴军,Google 研究员前言:隐含马尔可夫模型是一个数学模型,到目前为之,它一直被认为是实现快速精确的语音识别系统的最成功的方法。复杂的语音识别问...
  • ruixj
  • ruixj
  • 2006年09月01日 16:00
  • 1085

数学之美 系列三 -- 隐含马尔可夫模型在语言处理中的应用

发表者:吴军,Google 研究员   前言:隐含马尔可夫模型是一个数学模型,到目前为之,它一直被认为是实现快速精确的语音识别系统的最成功的方法。复杂的语音识别问题通过隐含马尔可夫模型能非常简单地被表...
  • chenhuaijin
  • chenhuaijin
  • 2010年01月01日 17:13
  • 166
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【数学之美系列三】隐含马尔可夫模型在语言处理中的应用
举报原因:
原因补充:

(最多只允许输入30个字)