关闭

阅读小结:Large-Margin Softmax Loss for Convolutional Neural Networks

徐博最近一直在看我博客,肯定是想看我什么时候不更新,然后好嘲笑我。当然,不排除徐博已经爱上我的可能。 What: 改进SoftmaxLoss,显式的控制类内的距离,(不让 已经对的样本score太高,影响训练) 可以防止过拟合。 回顾SoftmaxLoss: 1. Softmax 就是一个把一个向量归一的函数,输出也是向量。在matlab里就3行代码: % X...
阅读(730) 评论(2)

周志华《机器学习》 读后感

书还是比较厚的,我会挑感兴趣的章节先更新。 以写小结和感想为主。(我也是机器学习入门,所以小结以感性理解为主。) 第四章 决策树 ☑️ ---------第四章 决策树 ----------- What 决策树 首先是一棵树 利用贪心法 每个中间节点 按照学习到的原则分隔 几波数据,(就是分叉几个子节点)。 所以对于分类问题而言,数据从根节点进入,最后掉到的叶结点是哪个...
阅读(1993) 评论(1)

《造梦者》观后感

最近因为签证的事情待在家里,paper也在准备。 可就是没心思写paper,查related work、introduction讲故事 啥的 真的对一个不说英语的人来说很烦啊。 实验上还没有尽善尽美,所以心里很郁闷。 看了造梦者,然后发现马云爸爸果然是高瞻远瞩。 同时也是吃了好多苦。也许他们的成功很难想象,但失败的景象却很容易想象(公司破产,员工讨债)。 但他们毕竟没有失败,作为...
阅读(2307) 评论(0)

设计心理学1_日常的设计 读后感

书很厚,我会一点点update,以感想和摘录书中。 《设计心理学1_日常的设计》 唐纳德.A.诺曼 著 ----------------第一章 日用品心理学---------------- 一开篇作者就通过玻璃门案例 和壶把/茶嘴同一侧的茶壶设计  指出:好的设计有两个重要特征:可视性(discoverability)及 易通性(understanding) 可视性:所...
阅读(1265) 评论(0)

阅读小结:InfoGAN:Interpretable Representation Learning by Information Maximising Generative Adversarial

之前GAN中都没有加入分类信息,都是耍流氓啊。用原始maxD的时候,G学到的容易收敛到一个固定图像。 而用feature matching的话,相同向量可能每次match的都不同,这怎么regression啊,摔  (也可能我是用姿势不对,但有多类的feature matching不靠谱啊) What: 1.通常GAN把一个随机噪声向量z生成为一张图像。z可能从一个 0到1的随机采样...
阅读(3198) 评论(6)

阅读小结:Stacked Hourglass Networks for Human Pose Estimation

arXiv: https://arxiv.org/pdf/1603.06937v2.pdf github: https://github.com/anewell/pose-hg-train What: 人体关键点预测,输入人体图像输出几个关键点。 使用了反复迭代bottom down/  top down 这个策略在人脸landmark 甚至更早像ASM就有,反复迭代来更精...
阅读(1862) 评论(0)

阅读小结:Improved Techniques for training GANS

github地址:https://github.com/openai/improved-gan/ What: 提出了对于GANs新的结构和训练过程。主要focus在两个应用:半监督学习 和  更好的图像产生。 对于G,不要求一个和test data和像的模型,也不要求不使用label。 实验中,D在半监督分类任务上达到了state-of-art的结果。 G在MNIST样本人已经无...
阅读(2379) 评论(9)
    个人资料
    • 访问:43711次
    • 积分:821
    • 等级:
    • 排名:千里之外
    • 原创:31篇
    • 转载:0篇
    • 译文:3篇
    • 评论:40条
    文章分类
    关于我