二分图的最佳匹配(KM 算法)

原创 2007年09月19日 05:21:00
找了标程研究了一下,修改成自己的风格了,贴上来。
 
引用:
KM算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[i],顶点Yi的顶标为B [i],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[i]+B[j]>=w[i,j]始终 成立。KM算法的正确性基于以下定理:
  若由二分图中所有满足A[i]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。
  这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。
  初始时为了使A[i]+B[j]>=w[i,j]恒成立,令A[i]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。
  我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:
两端都在交错树中的边(i,j),A[i]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。
两端都不在交错树中的边(i,j),A[i]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。
X端不在交错树中,Y端在交错树中的边(i,j),它的A[i]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。
X端在交错树中,Y端不在交错树中的边(i,j),它的A[i]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。
  现在的问题就是求d值了。为了使A[i]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于min{A[i]+B[j]-w[i,j]|Xi在交错树中,Yi不在交错树中}。
  以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶 标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数 slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与A [i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修改 顶标后,要把所有的slack值都减去d。

#include <cstdio>
#include 
<memory.h>
#include 
<algorithm>    // 使用其中的 min 函数
using namespace std;

const int MAX = 1024;

int n;                // X 的大小
int weight [MAX] [MAX];        // X 到 Y 的映射(权重)
int lx [MAX], ly [MAX];        // 标号
bool sx [MAX], sy [MAX];    // 是否被搜索过
int match [MAX];        // Y(i) 与 X(match [i]) 匹配

// 初始化权重
void init (int size);
// 从 X(u) 寻找增广道路,找到则返回 true
bool path (int u);
// 参数 maxsum 为 true ,返回最大权匹配,否则最小权匹配
int bestmatch (bool maxsum = true);

void init (int size)
{
    
// 根据实际情况,添加代码以初始化
    n = size;
    
for (int i = 0; i < n; i ++)
        
for (int j = 0; j < n; j ++)
            scanf (
"%d"&weight [i] [j]);
}


bool path (int u)
{
    sx [u] 
= true;
    
for (int v = 0; v < n; v ++)
        
if (!sy [v] && lx[u] + ly [v] == weight [u] [v])
            {
            sy [v] 
= true;
            
if (match [v] == -1 || path (match [v]))
                {
                match [v] 
= u;
                
return true;
                }
            }
    
return false;
}

int bestmatch (bool maxsum)
{
    
int i, j;
    
if (!maxsum)
        {
        
for (i = 0; i < n; i ++)
            
for (j = 0; j < n; j ++)
                weight [i] [j] 
= -weight [i] [j];
        }

    
// 初始化标号
    for (i = 0; i < n; i ++)
        {
        lx [i] 
= -0x1FFFFFFF;
        ly [i] 
= 0;
        
for (j = 0; j < n; j ++)
            
if (lx [i] < weight [i] [j])
                lx [i] 
= weight [i] [j];
        }

    memset (match, 
-1sizeof (match));
    
for (int u = 0; u < n; u ++)
        
while (1)
            {
            memset (sx, 
0sizeof (sx));
            memset (sy, 
0sizeof (sy));
            
if (path (u))
                
break;

            
// 修改标号
            int dx = 0x7FFFFFFF;
            
for (i = 0; i < n; i ++)
                
if (sx [i])
                    
for (j = 0; j < n; j ++)
                        
if(!sy [j])
                            dx 
= min (lx[i] + ly [j] - weight [i] [j], dx);
            
for (i = 0; i < n; i ++)
                {
                
if (sx [i])
                    lx [i] 
-= dx;
                
if (sy [i])
                    ly [i] 
+= dx;
                }
            }

    
int sum = 0;
    
for (i = 0; i < n; i ++)
        sum 
+= weight [match [i]] [i];

    
if (!maxsum)
        {
        sum 
= -sum;
        
for (i = 0; i < n; i ++)
            
for (j = 0; j < n; j ++)
                weight [i] [j] 
= -weight [i] [j];         // 如果需要保持 weight [ ] [ ] 原来的值,这里需要将其还原
        }
    
return sum;
}


int main()
{
    
int n;
    scanf (
"%d"&n);
    init (n);
    
int cost = bestmatch (true);

    printf (
"%d ", cost);
    
for (int i = 0; i < n; i ++)
        {
        printf (
"Y %d -> X %d ", i, match [i]);
        }

    
return 0;


/*
5
3 4 6 4 9
6 4 5 3 8
7 5 3 4 2
6 3 2 2 5
8 4 5 4 7
//执行bestmatch (true) ,结果为 29
*/

/*
5
7 6 4 6 1
4 6 5 7 2
3 5 7 6 8
4 7 8 8 5
2 6 5 6 3
//执行 bestmatch (false) ,结果为 21
*/

这个实现和图论书上描述的有所不同,这个和匈牙利算法方法上是一样的(不断地寻找增广道路。。),而不是像书上在过程中调用匈牙利算法。。

二分图的最佳匹配(KM 算法)

KM算法求最小权二分匹配,模板题,构图很简单,直接把人当作左边的点,房子当作右边的点, 两者之间的曼哈顿距离当作权值即可。第一次搞带权二分匹配的题,就是用KM算法求最小权的时候要加个处,由于KM求的...
  • weiqubo
  • weiqubo
  • 2011年11月29日 10:44
  • 8255

二分图的最佳完美匹配——KM算法

二分图的最佳完美匹配如果二分图的每条边都有一个权(可以是负数),要求一种完备匹配方案,使得所有匹配边的权和最大,记做最佳完美匹配。(特殊的,当所有边的权为1时,就是最大完备匹配问题) 我们使用KM算...
  • sixdaycoder
  • sixdaycoder
  • 2015年08月17日 15:24
  • 6193

带权二分图的最佳匹配(KM算法)

还是没看懂一般图都是最大匹配问题。。怪我太笨了哎~ 先来个看明白了的KM算法——寻找带权二分图的最佳匹配方法 一般对KM算法的描述,基本上可以概括成以下几个步骤: (1) 初始化可行标杆 (...
  • x_y_q_
  • x_y_q_
  • 2016年07月16日 23:17
  • 3621

二分图(三)——KM算法

KM算法手工模拟
  • zxn0803
  • zxn0803
  • 2015年11月23日 18:37
  • 4503

KM算法求带权二分图的最大匹配(完备匹配)

1.基础知识普及二分图的概念二分图又称作二部图,是图论中的一种特殊 模型。 设G=(V,{R})是一个无向图。如顶点集V可分 割为两个互不相交的子集,并且图中每条边 依附的两个顶点都分属两个不同的子集...
  • makenothing
  • makenothing
  • 2016年02月18日 13:09
  • 1978

数据结构----二分图匹配----KM算法详解

一、相关概念 1.完美匹配 如果一个二分图,X部的每一个顶点都与Y部的一个顶点匹配,并且Y部的每一个顶点也与X部的一个顶点匹配,则该匹配为完美匹配。 2.完备匹配 如果一个二分图,...
  • C20180602_csq
  • C20180602_csq
  • 2017年05月03日 14:07
  • 395

二分图最佳匹配---KM算法

O(n^4)算法#include #include #include using namespace std; #define N 510struct Kuhn_Munkres{ int...
  • L123012013048
  • L123012013048
  • 2015年11月02日 13:31
  • 418

二分图最佳完美匹配-KM算法

二分图最佳完美匹配-KM算法总结。
  • zzkksunboy
  • zzkksunboy
  • 2017年05月31日 08:17
  • 577

KM算法——二分图的最佳匹配

/************************************************************************* *************************...
  • u013573047
  • u013573047
  • 2014年12月03日 20:24
  • 743

二分图匹配——匈牙利算法和KM算法

二分图的概念二分图又称作二部图,是图论中的一种特殊模型。 设G=(V, E)是一个无向图。如果顶点集V可分割为两个互不相交的子集X和Y,并且图中每条边连接的两个顶点一个在X中,另一个在Y中,则称图G...
  • C20180630
  • C20180630
  • 2017年04月14日 20:41
  • 3904
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:二分图的最佳匹配(KM 算法)
举报原因:
原因补充:

(最多只允许输入30个字)