Coursera机器学习 week7 assignment

原创 2016年08月31日 10:25:32

仅供思路参考,代码最好还是自己独立完成。


gaussianKernel.m:

sim = exp(- sum((x1-x2).^2) / (2*(sigma^2)) );


dataset3Params.m:

lambda_all = [0.01 0.03 0.1 0.3 1 3 10 30]';
len_all = size(lambda_all, 1);
error_matrix = zeros(len_all, len_all);

for i = 1:len_all
  now_C = lambda_all(i);
  for j = 1:len_all
    now_sigma = lambda_all(j);
    model = svmTrain(X, y, now_C, @(x1, x2) gaussianKernel(x1, x2, now_sigma)); 
    predictions = svmPredict(model, Xval);
    error = mean(double(predictions ~= yval));
    
    error_matrix(i, j) = error;
  end
end

ans_min = min(error_matrix(:));  %找出(8*8)中的最小值
[index_C, index_sigma] = find(error_matrix==ans_min);  %找出该最小值在(8*8)中的行、列索引

C = lambda_all(index_C);
sigma = lambda_all(index_sigma);


processEmail.m:

for i = 1:length(vocabList)
      if(strcmp(str, vocabList{i}) == 1)
        word_indices = [word_indices ; i];
        break;
      else
        continue;
      end
    end


emailFeatures.m:

for i = 1:length(word_indices)
  x(word_indices(i)) = 1;
end


版权声明:本文为博主原创文章,未经博主允许不得转载。

Coursera吴恩达机器学习课程 总结笔记及作业代码——第1,2周

Linearregression 1 Model representation 2 Cost function 3 Gradient descent 4 Gradient descent for li...
  • qq_27008079
  • qq_27008079
  • 2017年04月23日 20:02
  • 15439

Coursera吴恩达机器学习课程 总结笔记及作业代码——第4周神经网络

Neural Networks1.1 Non-linear hypotheses在课程的开头,提到了非线性假设,会因为特征量的增多导致二次项数的剧增。 举个例子,在图像识别中,一个50*50像素的图...
  • qq_27008079
  • qq_27008079
  • 2017年05月02日 22:27
  • 6200

Coursera吴恩达机器学习课程 总结笔记及作业代码——第3周逻辑回归

Logistic Regression上一次的课程主要解决回归分析问题,这一次的课程主要为分类问题,分类问题也可看做将回归问题的连续性离散化。1.1 Classification先来谈谈二分类问题。课...
  • qq_27008079
  • qq_27008079
  • 2017年04月25日 21:33
  • 7955

Coursera机器学习 week8 assignment

findClosestCentroids.m: K_temp = zeros(K, 1); for i = 1:size(idx, 1) %遍历所有样本 for j = 1:K %遍...
  • StephenFengz
  • StephenFengz
  • 2016年09月02日 20:42
  • 1046

Coursera机器学习 week5 神经网络的学习 assignment

sigmoidGradient.m: function g = sigmoidGradient(z) %SIGMOIDGRADIENT returns the gradient of the sig...
  • StephenFengz
  • StephenFengz
  • 2016年08月19日 17:49
  • 1843

[Coursera机器学习]Support Vector Machines WEEK7编程作业

1.2 SVM with Gaussian KernelsYou should now complete the code in gaussianKernel.m to compute the Gau...
  • wangjianyu0115
  • wangjianyu0115
  • 2016年12月10日 21:40
  • 1314

coursera_机器学习_吴恩达_week3

参考:点击打开链接
  • wwyl1001
  • wwyl1001
  • 2018年01月14日 17:40
  • 21

Coursera机器学习 week2 多变量线性回归 编程作业代码

这是Coursera上 Week2 的 “多变量线性回归” 的编程作业代码。经过测验,全部通过。包括以下八个文件:% warmUpExercise.m % plotData.m % ...
  • Artprog
  • Artprog
  • 2016年05月21日 16:22
  • 4538

Coursera机器学习 week6 编程作业代码

这是Coursera上 Week4 的 “神经网络的表示” 的编程作业代码。经过测验,全部通过。 下面是 linearRegCostFunction.m 的代码: function [J, gra...
  • Artprog
  • Artprog
  • 2016年05月21日 16:29
  • 3240

Coursera_机器学习_week4&5_神经网络

神经网络
  • icecutie
  • icecutie
  • 2016年04月02日 23:05
  • 2813
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Coursera机器学习 week7 assignment
举报原因:
原因补充:

(最多只允许输入30个字)