Coursera机器学习 week7 assignment

原创 2016年08月31日 10:25:32

仅供思路参考,代码最好还是自己独立完成。


gaussianKernel.m:

sim = exp(- sum((x1-x2).^2) / (2*(sigma^2)) );


dataset3Params.m:

lambda_all = [0.01 0.03 0.1 0.3 1 3 10 30]';
len_all = size(lambda_all, 1);
error_matrix = zeros(len_all, len_all);

for i = 1:len_all
  now_C = lambda_all(i);
  for j = 1:len_all
    now_sigma = lambda_all(j);
    model = svmTrain(X, y, now_C, @(x1, x2) gaussianKernel(x1, x2, now_sigma)); 
    predictions = svmPredict(model, Xval);
    error = mean(double(predictions ~= yval));
    
    error_matrix(i, j) = error;
  end
end

ans_min = min(error_matrix(:));  %找出(8*8)中的最小值
[index_C, index_sigma] = find(error_matrix==ans_min);  %找出该最小值在(8*8)中的行、列索引

C = lambda_all(index_C);
sigma = lambda_all(index_sigma);


processEmail.m:

for i = 1:length(vocabList)
      if(strcmp(str, vocabList{i}) == 1)
        word_indices = [word_indices ; i];
        break;
      else
        continue;
      end
    end


emailFeatures.m:

for i = 1:length(word_indices)
  x(word_indices(i)) = 1;
end


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

[Coursera机器学习]Support Vector Machines WEEK7编程作业

1.2 SVM with Gaussian KernelsYou should now complete the code in gaussianKernel.m to compute the Gau...

Coursera_机器学习_week7_SVM支持向量机

SVM

Stanford 机器学习笔记 Week7 Support Vector Machines

Large Margin ClassificationOptimization Objective在logistic回归中,cost function使用了sigmoid函数,从而将θTx的值映射到(...

Week7_Support Vector Machines课后习题解答

转载:http://blog.csdn.net/a1015553840/article/details/50818848   大家好,今天和大家讨论一下coursera网站上Stanford...

Andrew Ng机器学习笔记+Weka相关算法实现(五)SVM最优间隔和核方法

这一章主要讲解Ng的机器学习中SVM的后续内容,主要包括最优间隔分类器求解,核方法。 最优间隔分类器的求解 利用以一篇讲过的的原始对偶问题求解的思路,我们可以将类似思路运用到SVM的求解上来。具体的分...

Ng机器学习 Week7 SVM

Quiz/Ex
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)